|
[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1964. [2] J. Aitchison and J. A. Brown. The lognormal distribution with special reference to its uses in economics. University of Cambridge Department of Applied Ecnomics Monograph 5, page 176, 1957. [3] A. Azzalini. A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, pages 171-178, 1985. [4] J. L. Bentley and J. B. Saxe. Generating sorted lists of random numbers. Transactions on Mathematical Software, 6(3):359-364, Sept. 1979. [5] D. C. Brock and G. E. Moore. Understanding Moore''s law: four decades of innovation. Chemical Heritage Foundation, 2006. [6] P.-L. Chen, C.-T. Tsai, Y.-N. Chen, K.-C. Chou, C.-L. Li, C.-H. Tsai, K.-W. Wu, Y.-C. Chou, C.-Y. Li, W.-S. Lin, S.-H. Yu, R.-B. Chiu, C.-Y. Lin, C.-C. Wang, P.-W. Wang, W.-L. Su, C.-H. Wu, T.-T. Kuo, T. G. McKenzie, Y.-H. Chang, C.-S. Ferng, C.-M. Ni, H.-T. Lin, C.-J. Lin, and S.-D. Lin. A linear ensemble of individual and blended models for music rating prediction. In Proceedings of KDD Cup 2011, pages 21-60, 2012. [7] C. J. Clopper and E. S. Pearson. The use of con dence or ducial limits illustrated in the case of the binomial. Biometrika, 26(4):404-413, 1934. [8] E. A. Cornish and R. A. Fisher. Moments and cumulants in the speci cation of distributions. Revue de l''Institut International de Statistique, pages 307-320, 1938. [9] R. B. Davies. Numerical inversion of a characteristic function. Biometrika, 60(2):415-417, 1973. [10] N. I. Fisher. Statistical Analysis of Circular Data. Cambridge University Press, 1995. [11] J. H. Friedman. Random event generation with preferred frequency distributions. Journal of Computational Physics, (7):201, 1970. [12] F. Galton. The most suitable proportion between the value of rst and second prizes. Biometrika, pages 385-399, 1902. [13] J. W. L. Glaisher. On a class of de nite integrals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(280):294-302, 1871. [14] G. H. Golub and C. F. Van Loan. Matrix Computations, volume 3. JHU press, 2012. [15] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, 2014. [16] M. Hane, T. Ikezawa, and T. Ezaki. Atomistic 3d process/device simulation considering gate line-edge roughness and poly-si random crystal orientation effects [mosfets]. In IEEE International Electron Devices Meeting 2003, pages 9-15. IEEE, 2003. [17] R. Harman and V. Lacko. On decompositional algorithms for uniform sampling from n-spheres and n-balls. Journal of Multivariate Analysis, 101(10):2297-2304, 2010. [18] F. Hausdorff. Summationsmethoden und momentfolgen. i. Mathematische Zeitschrift, 9(1-2):74-109, 1921. [19] A. Hazen. The storage to be provided in impounding reservoirs for municipal water supply. Transactions of the American Society of Civil Engineers, 77:1539-1669, 1914. [20] G. A. Holton. Value-at-risk: Theory and Practice. 2nd edition. https://www.value-at-risk.net/, 2014. [21] J. R. Hosking. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society: Series B (Methodological), 52(1):105-124, 1990. [22] J. R. M. Hosking, J. R. Wallis, and E. F. Wood. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics, 27(3):251-261, 1985. [23] R. J. Hyndman and Y. Fan. Sample quantiles in statistical packages. The American Statistician, 50(4):361-365, 1996. [24] J.-P. Imhof. Computing the distribution of quadratic forms in normal variables. Biometrika, 48(3/4):419-426, 1961. [25] ISO26262. Road Vehicles : Functional Safety Standard, International Standards Organization, Geneva, Switzerland. https://www.iso.org/standard/68383.html, 2018. [26] N. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Number v. 2 in Wiley series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley & Sons, 1995. [27] G. Kitagawa. Monte Carlo lter and smoother for non-gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1):1-25, 1996. [28] D. E. Knuth. The Art of Computer Programming, Volume 3: (2nd Edition) Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998. [29] C.-Y. Li, W.-L. Su, T. G. McKenzie, F.-C. Hsu, S.-D. Lin, J. Y.-j. Hsu, and P. B. Gibbons. Recommending missing sensor values. In 2015 IEEE International Conference on Big Data (Big Data), pages 381-390. IEEE, 2015. [30] E. Limpert, W. A. Stahel, and M. Abbt. Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability,normal or log-normal: that is the question. BioScience, 51(5):341-352, 2001. [31] A. M. Mathai and S. B. Provost. Quadratic Forms in Random Variables: Theory and Applications. Dekker, 1992. [32] T. G. McKenzie, C.-S. Ferng, Y.-N. Chen, C.-L. Li, C.-H. Tsai, K.-W. Wu, Y.-H. Chang, C.-Y. Li, W.-S. Lin, S.-H. Yu, et al. Novel models and ensemble techniques to discriminate favorite items from ones for personalized music recommendation. In Proceedings of the 2011 International Conference on KDD Cup 2011-Volume 18, pages 101-135. JMLR. org, 2011. [33] S. Mittal. A survey of architectural techniques for managing process variation. ACM Computing Surveys (CSUR), 48(4):54, 2016. [34] E. W. Montroll and M. F. Shlesinger. On 1/f noise and other distributions with long tails. Proceedings of the National Academy of Sciences, 79(10):3380-3383, 1982. [35] G. E. Moore et al. Cramming more components onto integrated circuits. Electronics, 38(8), 1965. [36] M. E. Muller. A note on a method for generating points uniformly on n-dimensional spheres. Communications of the ACM, 2(4):19-20, 1959. [37] D. B. Owen. Tables for computing bivariate normal probabilities. The Annals of Mathematical Statistics, 27(4):1075-1090, 1956. [38] K. Pearson. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302):157-175, 1900. [39] K. Pearson. Note on Francis Galton s problem. Biometrika, 1(4):390-399, 1902. [40] M. J. Pelgrom and A. C. Duinmaijer. Matching properties of mos transistors. In ESSCIRC''88: Fourteenth European Solid-State Circuits Conference, pages 327-330. IEEE, 1988. [41] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo method, volume 10. John Wiley & Sons, 2016. [42] J. A. Shohat and J. D. Tamarkin. The Problem of Moments. Number 1. American Mathematical Soc., 1943. [43] A. Singhee and R. A. Rutenbar. Statistical blockade: a novel method for very fast monte carlo simulation of rare circuit events, and its application. In 2007 Design, Automation & Test in Europe Conference & Exhibition, pages 1-6. IEEE, 2007. [44] M. Thulin et al. The cost of using exact con dence intervals for a binomial proportion. Electronic Journal of Statistics, 8(1):817-840, 2014. [45] R. M. Vogel and N. M. Fennessey. L moment diagrams should replace product moment diagrams. Water Resources Research, 29(6):1745-1752, 1993. [46] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie, J.-W. Chou, P.-H. Chung, C.-H. Ho, C.-F. Chang, Y.-H. Wei, J.-Y. Weng, E.-S. Yan, C.-W. Chang, T.-T. Kuo, Y.-C. Lo, P. T. Chang, C. Po, C.-Y. Want, Y.-H. Huang, C.-W. Hung, Y.-X. Ruan, Y.-S. Lin, S.-d. Lin, H.-T. Lin, and C.-J. Lin. Feature Engineering and Classi er Ensemble for KDD Cup 2010. Journal of Machine Learning Research, 1(16), 2010.
|