跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱至
研究生(外文):Chen, Yu-Chih
論文名稱:利用無線近紅外線光譜儀進行腦組織氧分壓評估
論文名稱(外文):Partial Pressure Estimation of Brain Tissue Oxygen in Traumatic Brain Injury by Using Wireless Near Infrared Spectroscopy
指導教授:林伯昰
指導教授(外文):Lin, Bor-Shyh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:44
中文關鍵詞:腦創傷近紅外線光譜儀含氧血紅素非含氧血紅素全血紅素235氯化三苯基四氮唑腦組織氧分壓
外文關鍵詞:traumatic brain injurynear-infrared spectroscopyoxyhemoglobindeoxyhemoglobintotalhemoglobintriphenyltetrazolium chloride (TTC)partial pressure of oxygen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在臨床上,腦組織氧分壓的監測對於創傷性腦損傷的患者而言是一項重要的指標。但這是一種侵入性的量測方法,且並不方便於實時的監控。近年來,近紅外線光譜儀被廣泛應用於神經科學,並能以非侵入性的方式評估腦部缺血及缺氧。在本論文中,利用了一個無線近紅外線光譜儀和一個腦組織氧分壓探測器監測大鼠的腦部在不同撞擊力道的氧合狀態。在液壓衝擊的實驗中,所有大鼠被隨機分配於四種不同力道之組別。並隨著不同的撞擊力道來觀察含氧和非含氧血紅素的濃度變化與腦組織氧分壓之相關性。2,3,5氯化三苯基四氮唑(TTC)染色法則是用於評估腦梗死體積。結果顯示,近紅外線光譜儀之參數之變化量會在撞擊點後立即下降後逐漸回升,而後維持於一個穩定的狀態。腦組織氧分壓之變化量的趨勢則與之相似。TTC染色結果顯示了腦梗死體積會隨著撞擊力道增加而上升,且含氧血紅素及腦組織氧分壓之變化量則隨著撞擊力道增加而降低。含氧血紅素及腦組織氧分壓之變化量間的相關係數為0.77,而非含氧血紅素及腦組織氧分壓之變化量間為0.08。由此可見含氧血紅素之變化量與腦組織氧分壓之變化量間有高的正相關性。這意味著含氧血紅素之變化量可提供為參考參數來估計腦組織分壓。
Monitoring partial pressure of oxygen in the brain tissue (PbtO2) is an important standard for traumatic brain injury (TBI) patients in clinical. But it is an invasive measurement and inconvenient for real-time monitoring. Recently, Near-infrared spectroscopy (NIRS) is widely used in neuroscience, and can assess cerebral ischemia and hypoxia non-invasively. In this thesis, a novel wireless NIRS system, and the PbtO2 monitoring system were used to monitor the oxygenation of rat brains under different impact strengths. And all rats were randomly assigned to four different impact strength groups in the fluid percussion injury experiments. The relationships of the concentration changes of HbO2 and HbR, and PbtO2 under and after TBI with different impact strengths were also investigated. Triphenyltetrazolium chloride (TTC) staining was used for infarction volume evaluation. Results show that Δ[HbO2], Δ[HbR], and Δ[HbT] dropped immediately after the impact and increased gradually then maintain a stable status. And Δ[PbtO2] had a similar change tendency with the NIRS parameters. The result of the TTC staining showed the infarction volume was increased with the increased impact strength, and Δ[HbO2] and Δ[PbtO2] were decreased with the increased impact strength. The correlation coefficient between Δ[PbtO2] and Δ[HbO2] is 0.77, and between Δ[HbR] and Δ[HbO2] is 0.08. It can be discovered that Δ[HbO2] is highly and positively correlated to Δ[PbtO2]. That means the Δ[HbO2] may be available to be the reference parameter to estimate the partial pressure of oxygen in the brain tissue.
摘 要 i
Abstract ii
誌 謝 iv
Contents v
List of Figures vii
Chapter 1 Introduction 1
1.1. Background 1
1.2. Partial pressure of oxygen in the brain tissue 2
1.3. Principles of near infrared spectroscopy 3
1.3.1 Optical characteristics of the biological tissues in near infrared region 3
1.3.2 Modified beer-lambert law 5
1.4. Motivation 7
1.5. Organization of thesis 8
Chapter 2 System Structure and Design 9
2.1. System overview 9
2.2. Design of the wireless NIRS system 11
2.2.1 NIRS optical measuring probe 11
2.2.2 Wireless signal monitoring module 12
2.2.3 Host system 13
Chapter 3 Software and Analysis 14
3.1 Firmware of the wireless NIRS system 14
3.2 Implement of the wireless NIRS monitoring program 16
3.3 Statistical analysis 19
Chapter 4 Experimental Rat Model of Traumatic Brain Injury 20
4.1 Animal preparation 20
4.2 Design of traumatic brain injury experiment 21
4.3 Cerebral infarction assay 24
Chapter 5 Monitoring Results of the Traumatic Brain Injury Experiment 25
5.1 Monitoring results by the wireless NIRS system 25
5.2 Monitoring results by the PbtO2 monitoring system 28
5.3 Relationship between the NIRS parameters and PbtO2 after TBI 29
5.4 Assayed results of triphenyltetrazolium chloride 32
5.5 Relationship between the infarction volume and the oxygen-related parameters 34
Chapter 6 Discussion 36
Chapter 7 Conclusion 39
References 40

[1] E. Zaloshnja, T. Miller, J. A. Langlois, and A. W. Selassie, "Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005," Journal of Head Trauma Rehabilitation, vol. 23, pp. 394-400, 2008.
[2] V. G. Coronado, L. C. McGuire, K. Sarmiento, J. Bell, M. R. Lionbarger, C. D. Jones, A. I. Geller, N. Khoury, and L. Xu, "Trends in traumatic brain injury in the U.S. and the public health response: 1995-2009," Journal of Safety Research, vol. 43, pp. 299-307, 2012.
[3] E. A. Finkelstein, P. S. Corso, and T. R. Miller, The incidence and economic burden of injuries in the United States, New York: Oxford University Press, 2006.
[4] V. G. Coronado, L. C. McGuire, M. Faul, D. E. Sugerman, and W. S. Pearson, "Traumatic brain injury epidemiology and public health issues," Brain Injury Medicine, 2nd Edition: Principles and Practice, N. D. Zasler, D. I. Katz, and R. D. Zafonte, and D. B. Arciniegas Eds., Demos Medical, pp. 84-100, 2012.
[5] R. W. Rimel, B. Giordani, J. T. Barth, and J. A. Jane, "Moderate head injury: completing the clinical spectrum of brain trauma," Neurosurgery, vol. 11, pp. 344-351, 1982.
[6] R. M. Chesnut, L. F. Marshall, M. R. Klauber, B. A. Blunt, N. Baldwin, H. M. Eisenberg, J. A. Jane, A. Marmarou, and M. A. Foulkes, "The role of secondary brain injury in determining outcome from severe head injury," Journal of Trauma, vol. 34, pp. 216-222, 1993.
[7] R. M. Chesnut, "Secondary brain insults after head injury: clinical perspectives," New Horizons (Baltimore, Md.), vol. 3, pp. 366-375, 1995.
[8] B. Siesjö and P. Siesjö, "Mechanisms of secondary brain injury," European Journal of Anaesthesiology, vol. 13, pp. 247-268, 1996.
[9] J. Ghajar, "Traumatic brain injury," Lancet, vol. 356, pp. 923-929, 2000.
[10] A. K. Gupta, "Monitoring the injured brain in the intensive care unit," Journal of Postgraduate Medicine, vol. 48, pp. 218-225, 2002.
[11] M. Erecińska and I. A. Silver, "Tissue oxygen tension and brain sensitivity to hypoxia," Respiration Physiology, vol. 128, pp. 263-276, 2001.
[12] E. Maloney-Wilensky, V. Gracias, A. Itkin, K. Hoffman, S. Bloom, W. Yang, S. Christian, and P. D. LeRoux, "Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review," Crit Care Med, vol. 37, pp. 2057-2063, 2009.
[13] A. M. Spiotta, M. F. Stiefel, V. H. Gracias, A. M. Garuffe, W. A. Kofke, E. Maloney-Wilensky, A. B. Troxel, J. M. Levine, and P. D. LeRoux, "Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury: clinical article," Journal of Neurosurgery, vol. 113, pp. 571-580, 2010.
[14] E. A. Eriksson, J. F. Barletta, B. E. Figueroa, B. W. Bonnell, W. E. Vanderkolk, K. J. McAllen, and M. M. Ott, "Cerebral perfusion pressure and intracranial pressure are not surrogates for brain tissue oxygenation in traumatic brain injury," Clinical Neurophysiology, vol. 123, pp. 1255-1260, 2012.
[15] H. van Santbrink, A. I. Maas, and C. J. Avezaat, "Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury," Neurosurgery, vol. 38, pp. 21-31, 1996.
[16] N. Barazangi and J. C. Hemphill III, "Advanced cerebral monitoring in neurocritical care," Neurology India, vol. 56, pp. 405-414, 2008.
[17] F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science, vol. 198, pp. 1264-1267, 1977.
[18] T. Wolf, U. Lindauer, U. Reuter, T. Back, A. Villringer, K. Einhäupl, and U. Dirnagl, "Noninvasive near infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during peri-infarct depolarizations in focal cerebral ischemia in the rat," Journal of Cerebral Blood Flow &; Metabolism, vol. 17, pp. 950-954, 1997.
[19] M. Tsuji, A. Duplessis, G. Taylor, R. Crocker, and J. J. Volpe, "Near infrared spectroscopy detects cerebral ischemia during hypotension in piglets," Pediatric Research, vol. 44, pp. 591-595, 1998.
[20] C. D. Kurth, W. J. Levy, and J. McCann, "Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia–ischemia in piglets," Journal of Cerebral Blood Flow &; Metabolism, vol. 22, pp. 335-341, 2002.
[21] A. Petrova and R. Mehta, "Near-infrared spectroscopy in the detection of regional tissue oxygenation during hypoxic events in preterm infants undergoing critical care," Pediatric Critical Care Medicine, vol. 7, pp. 449-454, 2006.
[22] A. C. Merzagora, M. T. Schultheis, B. Onaral, and M. Izzetoglu, "Functional near-infrared spectroscopy–based assessment of attention impairments after traumatic brain injury," Journal of Innovative Optical Health Sciences, vol. 4, pp. 251-260, 2011.
[23] B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-Invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia, vol. 2, pp. 26-40, 2000.
[24] R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Applied Physics Letters, vol. 74, pp. 874-876, 1999.
[25] A. J. Welch and M. J. Van Gemert, Optical-thermal response of laser-irradiated tissue, Springer, 2010.
[26] A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Applied Optics, vol. 44, pp. 2082-2093, 2005.
[27] D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage, vol. 13, pp. 76-90, 2001.
[28] C. E. Dixon, B. G. Lyeth, J. T. Povlishock, R. L. Findling, R. J. Hamm, A. Marmarou, H. F. Young, and R. L. Hayes, "A fluid percussion model of experimental brain injury in the rat," Journal of Neurosurgery, vol. 67, pp. 110-119, 1987.
[29] J.-R. Kuo, C.-J. Lo, C.-C. Chio, C.-P. Chang, and M.-T. Lin, "Resuscitation from experimental traumatic brain injury by agmatine therapy," Resuscitation, vol. 75, pp. 506-514, 2007.
[30] J.-R. Kuo, M.-H. Chang, C.-C. Wang, C.-C. Chio, J.-J. Wang, and B.-S. Lin, "Wireless near-infrared spectroscopy system for determining brain hemoglobin levels in laboratory animals," Journal of Neuroscience Methods, vol. 214, pp. 204-209, 2013.
[31] C. Werner and K. Engelhard, "Pathophysiology of traumatic brain injury," British Journal of Anaesthesia, vol. 99, pp. 4-9, 2007.
[32] N. A. Martin, R. V. Patwardhan, M. J. Alexander, C. Z. Africk, J. H. Lee, E. Shalmon, D. A. Hovda, and D. P. Becker, "Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm," Journal of Neurosurgery, vol. 87, pp. 9-19, 1997.
[33] G. Marchal, A. R. Young, and J.-C. Baron, "Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography," Journal of Cerebral Blood Flow &; Metabolism, vol. 19, pp. 467-482, 1999.
[34] P. Vespa, M. Bergsneider, N. Hattori, H.-M. Wu, S.-C. Huang, N. A. Martin, T. C. Glenn, D. L. McArthur, and D. A. Hovda, "Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study," Journal of Cerebral Blood Flow &; Metabolism, vol. 25, pp. 763-774, 2005.
[35] D. E. Sakas, M. R. Bullock, J. Patterson, D. Hadley, D. J. Wyper, and G. M. Teasdale, "Focal cerebral hyperemia after focal head injury in humans: a benign phenomenon ?," Journal of Neurosurgery, vol. 83, pp. 277-284, 1995.
[36] D. F. Kelly, R. K. Kordestani, N. A. Martin, T. Nguyen, D. A. Hovda, M. Bergsneider, D. L. McArthur, and D. P. Becker, "Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome," Journal of Neurosurgery, vol. 85, pp. 762-771, 1996.
[37] E. W. Lang, M. Czosnyka, and H. M. Mehdorn, "Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury," Critical Care Medicine, vol. 31, pp. 267-271, 2003.
[38] J. Nortje and A. Gupta, "The role of tissue oxygen monitoring in patients with acute brain injury," British Journal of Anaesthesia, vol. 97, pp. 95-106, 2006.
[39] D. K. Menon, J. P. Coles, A. K. Gupta, T. D. Fryer, P. Smielewski, D. A. Chatfield, F. Aigbirhio, J. N. Skepper, P. S. Minhas, P. J. Hutchinson, T. A. Carpenter, J. C. Clark, and J. D. Pickard, "Diffusion limited oxygen delivery following head injury," Critical Care Medicine, vol. 32, pp. 1384-1390, 2004.
[40] C. Zweifel, C. Dias, P. Smielewski, and M. Czosnyka, "Continuous time-domain monitoring of cerebral autoregulation in neurocritical care," Medical Engineering &; Physics, vol. 36, pp. 638-645, 2014.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊