跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳旭心
研究生(外文):Shiu-Shin Chen
論文名稱:包覆雙硫侖與超順磁性氧化鐵海藻膠微米粒子的製備及其對卵巢癌細胞溫熱化學治療成效評估
論文名稱(外文):A preparation of Disulfiram and superparamagnetic iron oxide encapsulating alginate microparticles and their in vitro efficacy of hyperthermic chemotherapy toward ovarian cancer cells
指導教授:白孟宜
指導教授(外文):Meng-Yi Bai
口試委員:謝明發鄭詠馨
口試委員(外文):Ming-Fa HsiehYung-Hsin Cheng
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:雙硫侖海藻酸鈉藥物載體卵巢癌電噴霧
外文關鍵詞:disulfiramsodium alginatedrug carrierovarian cancerelectrospray
相關次數:
  • 被引用被引用:1
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雙硫侖原本為治療慢性酒精上癮症,近期學者研究發現其對於卵巢癌細胞有抑制生長之效果。因此本研究乃據此開發海藻膠微米粒子,其同時搭載雙硫侖及超順磁性氧化鐵,最後評估其治療卵巢癌的潛在應用。我們使用電噴霧法透過與氯化鈣離子凝膠化製備海藻膠微米粒子及包覆藥物。通過光學顯微鏡和掃描式電子顯微鏡觀察顆粒型態,粒子的粒徑大小約為200微米,形貌為圓盤狀,成功搭載藥物達包封率98%。在細胞存活率分析顯示對於SKOV-3及CP70的細胞毒性上,雙硫侖經顆粒載體包覆可提升毒殺癌細胞之能力。於藥物濃度300微莫耳細胞存活率皆僅剩20%以下,且顆粒載體本身對於細胞並無顯著毒性。而熱治療方面當超順磁性氧化鐵濃度達到1.566毫克/毫升有較好的熱治療效果,且透過海藻膠包覆超順磁性氧化鐵可降低超順磁性氧化鐵對細胞毒性。本實驗採用雙硫崙聯合超順磁性氧化鐵進行治療。 當藥物濃度為100微莫耳並進行額外的熱治療時,細胞存活率與僅使用藥物且濃度為300微莫耳的治療結果相似,即透過熱治療的輔助可以降低藥物使用量。實驗結果顯示此海藻膠微米粒子對於治療卵巢癌是具有潛力的化熱療載體。
Disulfiram is a drug which is used to support the treatment of chronic alcoholism. Recently, it has been found to have an ability to inhibit the growth of ovarian cancer cells. Therefore, in this study, we prepared alginate microparticles loaded with disulfiram and superparamagnetic iron oxide (SPIO) which have great potential application for the treatment of ovarian cancer. The drug-encapsulating alginate microparticles are prepared under the electrospray system and then will crosslink with calcium chloride ions. The particles were observed by optical microscope (OM) and scanning electron microscope (SEM), and the particle size is about 200 μm. The morphology of microparticles is disc-shape. The drug encapsulation efficiency of microparticles reached 98%. In the cell viability assay showing that the cytotoxicity of SKOV-3 and CP70, the encapsulation of disulfiram by particles can enhance the ability to kill cancer cells. The survival rate of the drug at a concentration of 300 μM cells was only 20% or less, and the blank particles were not significantly toxic to the cells. In the heat treatment, when the SPIO concentration reaches 1.566 mg/mL, the thermal therapeutic effect is better, and the SPIO encapsulated by the alginate particles can reduce the cytotoxicity of the SPIO. This experiment uses disulfiram combined with SPIO for treatment. When the drug concentration was 100 μM and additional doing heating treatment, the cell viability was similar to that of treatment just with drug concentration of 300 μM. That is, the use of heat therapy can reduce the amount of drug used. The results of this study showed that alginate particles are potential drug carrier for the treatment of ovarian cancer.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 1
中英文縮寫對照表 3
第1章、緒論 4
1.1研究動機與目的 4
1.2實驗流程 5
第2章、文獻回顧 6
2.1卵巢癌 6
2.1.1卵巢癌的診斷 6
2.1.2卵巢癌的治療 7
2.2老藥新用 7
2.2.1雙硫侖(Disulfiram) 8
2.3熱治療 8
2.4藥物傳輸系統 9
2.5藥物載體材料 10
2.5.1海藻酸鈉(Alginate) 10
2.6電噴霧(Electrospray) 11
[1] "Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention (PDQ®)–Patient Version, 2019.
[2] F. Ren, J. Shen, H. Shi, F. J. Hornicek, Q. Kan, and Z. Duan, "Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer," Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol. 1866, pp. 266-275, 2016.
[3] C. Stewart, C. Ralyea, and S. Lockwood, "Ovarian Cancer: An Integrated Review," Semin Oncol Nurs, vol. 35, pp. 151-156, 2019.
[4] M. Mara H Rendi, PhD, "Epithelial carcinoma of the ovary, fallopian tube, and peritoneum: Histopathology, 2019.
[5] W. H. Organization, "World Cancer Report 2014," p. Chapter 5.12. .
[6] T. T. Gong, Q. J. Wu, E. Vogtmann, B. Lin, and Y. L. Wang, "Age at menarche and risk of ovarian cancer: a meta-analysis of epidemiological studies," Int J Cancer, vol. 132, pp. 2894-900, 2013.
[7] A. Parvatala, R. R. Babu, N. B. Rao, and K. Narasimhulu, "Study of Ovarian Neoplastic Lesions," IOSR Journal of Dental and Medical Sciences vol. 15, pp. 32-38, 2016.
[8] P. J. v. D. Jurgen M.J. Piek, and René H.M. Verheijen, "Ovarian Carcinogenesis An Alternative Hypothesis," Advances in Experimental Medicine and Biology, vol. 622, pp. 79-87, 2008.
[9] G. C. Jayson, E. C. Kohn, H. C. Kitchener, and J. A. Ledermann, "Ovarian cancer," The Lancet, vol. 384, pp. 1376-1388, 2014.
[10] R. De Angelis, M. Sant, M. P. Coleman, S. Francisci, P. Baili, D. Pierannunzio, et al., "Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5—a population-based study," The Lancet Oncology, vol. 15, pp. 23-34, 2014.
[11] W. A. Cliby, M. A. Powell, N. Al-Hammadi, L. Chen, J. Philip Miller, P. Y. Roland, et al., "Ovarian cancer in the United States: contemporary patterns of care associated with improved survival," Gynecol Oncol, vol. 136, pp. 11-7, 2015.
[12] X. Zheng, S. Chen, L. Li, X. Liu, X. Liu, S. Dai, et al., "Evaluation of HE4 and TTR for diagnosis of ovarian cancer: Comparison with CA-125," J Gynecol Obstet Hum Reprod, vol. 47, pp. 227-230, 2018.
[13] S. Lheureux, C. Gourley, I. Vergote, and A. M. Oza, "Epithelial ovarian cancer," The Lancet, vol. 393, pp. 1240-1253, 2019.
[14] B. Orr and R. P. Edwards, "Diagnosis and Treatment of Ovarian Cancer," Hematol Oncol Clin North Am, vol. 32, pp. 943-964, 2018.
[15] G. O. S. Coyne, R. Piekarz, and A. P. Chen, "New Treatment Options for Ovarian Cancer," pp. 533-540, 2019.
[16] R. W. Naumann, R. L. Coleman, J. Brown, and K. N. Moore, "Phase III trials in ovarian cancer: The evolving landscape of front line therapy," Gynecol Oncol, 2019.
[17] S. Armbruster, R. L. Coleman, and J. A. Rauh-Hain, "Management and Treatment of Recurrent Epithelial Ovarian Cancer," Hematol Oncol Clin North Am, vol. 32, pp. 965-982, 2018.
[18] N. Nosengo, "New tricks for old drugs," Nature, vol. 534, pp. 314–316, 2016.
[19] J. A. DiMasi, H. G. Grabowski, and R. W. Hansen, "Innovation in the pharmaceutical industry: New estimates of R&D costs," J Health Econ, vol. 47, pp. 20-33, 2016.
[20] M. Garcia-Serradilla, C. Risco, and B. Pacheco, "Drug repurposing for new, efficient, broad spectrum antivirals," Virus Res, vol. 264, pp. 22-31, 2019.
[21] P. Nowak-Sliwinska, L. Scapozza, and A. R. i. Altaba, "Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer," Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2019.
[22] M. Simsek, B. Meijer, A. A. van Bodegraven, N. K. de Boer, and C. J. Mulder, "Finding hidden treasures in old drugs: the challenges and importance of licensing generics," Drug discovery today, vol. 23, pp. 17-21, 2018.
[23] A. C. Berger, S. Olson, S. G. Johnson, and S. H. Beachy, Drug repurposing and repositioning: workshop summary: National Academies Press, 2014.
[24] M. M. Braun, S. Farag-El-Massah, K. Xu, and T. R. Coté, "Emergence of orphan drugs in the United States: a quantitative assessment of the first 25 years," Nature Reviews Drug Discovery, vol. 9, p.519, 2010.
[25] M. Boolell, M. Allen, S. Ballard, S. Gepi-Attee, G. Muirhead, A. Naylor, et al., "Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction," International journal of impotence research, vol. 8, pp. 47-52, 1996.
[26] H. S. Gns, S. Gr, M. Murahari, and M. Krishnamurthy, "An update on Drug Repurposing: Re-written saga of the drug's fate," Biomed Pharmacother, vol. 110, pp. 700-716, 2019.
[27] R. F. DeBusk, C. J. Pepine, D. B. Glasser, A. Shpilsky, H. DeRiesthal, and M. Sweeney, "Efficacy and safety of sildenafil citrate in men with erectile dysfunction and stable coronary artery disease," The American journal of cardiology, vol. 93, pp. 147-153, 2004.
[28] K. Grundmann, K. Jaschonek, B. Kleine, J. Dichgans, and H. Topka, "Aspirin non-responder status in patients with recurrent cerebral ischemic attacks," Journal of neurology, vol. 250, pp. 63-66, 2003.
[29] J. K. Amory and D. W. Amory, "Dosing frequency of aspirin and prevention of heart attacks and strokes," The American journal of medicine, vol. 120, p. e5, 2007.
[30] J. Hald and E. Jacobsen, "A drug sensitising the organism to ethyl alcohol," The Lancet, vol. 252, pp. 1001-1004, 1948.
[31] K. Hochsattel and P. Brieger, "[Disulfiram in outpatient treatment of alcohol dependency]," Nervenarzt, vol. 87, pp. 506-12, 2016.
[32] J. J. Lipsky, M. L. Shen, and S. Naylor, "Overview—in vitro inhibition of aldehyde dehydrogenase by disulfiram and metabolites," Chemico-biological interactions, vol. 130, pp. 81-91, 2001.
[33] H. He, E. Markoutsa, J. Li, and P. Xu, "Repurposing disulfiram for cancer therapy via targeted nanotechnology through enhanced tumor mass penetration and disassembly," Acta Biomater, vol. 68, pp. 113-124, 2018.
[34] M. Wickstrom, K. Danielsson, L. Rickardson, J. Gullbo, P. Nygren, A. Isaksson, et al., "Pharmacological profiling of disulfiram using human tumor cell lines and human tumor cells from patients," Biochem Pharmacol, vol. 73, pp. 25-33, 2007.
[35] L. Zhang, B. Tian, Y. Li, T. Lei, J. Meng, L. Yang, et al., "A Copper-Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy," ACS Appl Mater Interfaces, vol. 7, pp. 25147-61, 2015.
[36] Y. A. Rezk, K. Yang, S. Bai, K. McLean, C. Johnston, R. K. Reynolds, et al., "Disulfiram’s Antineoplastic Effects on Ovarian Cancer," Journal of Cancer Therapy, vol. 06, pp. 1196-1205, 2015.
[37] Y. C. Wang, Y. T. Yo, H. Y. Lee, Y. P. Liao, T. K. Chao, P. H. Su, et al., "ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome," Am J Pathol, vol. 180, pp. 1159-69, 2012.
[38] R. Lindahl, "Aldehyde dehydrogenases and their role in carcinogenesis," Critical reviews in biochemistry and molecular biology, vol. 27, pp. 283-335, 1992.
[39] F. Austin, A. Mavanur, M. Sathaiah, J. Steel, D. Lenzner, L. Ramalingam, et al., "Aggressive management of peritoneal carcinomatosis from mucinous appendiceal neoplasms," Ann Surg Oncol, vol. 19, pp. 1386-93, 2012.
[40] M. Shinkai, "Functional magnetic particles for medical application," Journal of bioscience and bioengineering, vol. 94, pp. 606-613, 2002.
[41] P. Das, M. Colombo, and D. Prosperi, "Recent advances in magnetic fluid hyperthermia for cancer therapy," Colloids Surf B Biointerfaces, vol. 174, pp. 42-55, 2019.
[42] A. F. Abu-Bakr and A. Y. Zubarev, "Hyperthermia in a system of interacting ferromagnetic particles under rotating magnetic field," Journal of Magnetism and Magnetic Materials, vol. 477, pp. 404-407, 2019.
[43] A. Farzin, S. Hassan, R. Emadi, S. A. Etesami, and J. Ai, "Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy," Mater Sci Eng C Mater Biol Appl, vol. 98, pp. 930-938, 2019.
[44] S. Toraya-Brown and S. Fiering, "Local tumour hyperthermia as immunotherapy for metastatic cancer," Int J Hyperthermia, vol. 30, pp. 531-9, 2014.
[45] A. Y. Zubarev, L. Y. Iskakova, and A. F. Abu-Bakr, "Magnetic hyperthermia in solid magnetic colloids," Physica A: Statistical Mechanics and its Applications, vol. 467, pp. 59-66, 2017.
[46] M. Harabech, J. Leliaert, A. Coene, G. Crevecoeur, D. Van Roost, and L. Dupré, "The effect of the magnetic nanoparticle’s size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 426, pp. 206-210, 2017.
[47] W. R. Zhuang, Y. Wang, P. F. Cui, L. Xing, J. Lee, D. Kim, et al., "Applications of pi-pi stacking interactions in the design of drug-delivery systems," J Control Release, vol. 294, pp. 311-326, 2019.
[48] Y. L. Liu, D. Chen, P. Shang, and D. C. Yin, "A review of magnet systems for targeted drug delivery," J Control Release, vol. 302, pp. 90-104, 2019.
[49] V. R. Sinha and A. Trehan, "Biodegradable microspheres for protein delivery," Journal of Controlled Release, vol. 90, pp. 261-280, 2003.
[50] P. Davoodi, L. Y. Lee, Q. Xu, V. Sunil, Y. Sun, S. Soh, et al., "Drug delivery systems for programmed and on-demand release," Adv Drug Deliv Rev, vol. 132, pp. 104-138, 2018.
[51] S. Kajdič, O. Planinšek, M. Gašperlin, and P. Kocbek, "Electrospun nanofibers for customized drug-delivery systems," Journal of Drug Delivery Science and Technology, vol. 51, pp. 672-681, 2019.
[52] M. T. Taghizadeh, H. Ashassi-Sorkhabi, R. Afkari, and A. Kazempour, "Cross-linked chitosan in nano and bead scales as drug carriers for betamethasone and tetracycline," Int J Biol Macromol, vol. 131, pp. 581-588, 2019.
[53] M. Ge, W. Tang, M. Du, G. Liang, G. Hu, and S. M. Jahangir Alam, "Research on 5-fluorouracil as a drug carrier materials with its in vitro release properties on organic modified magadiite," Eur J Pharm Sci, vol. 130, pp. 44-53, 2019.
[54] J. P. Paques, E. van der Linden, C. J. van Rijn, and L. M. Sagis, "Preparation methods of alginate nanoparticles," Adv Colloid Interface Sci, vol. 209, pp. 163-71, 2014.
[55] F. Sarei, N. M. Dounighi, H. Zolfagharian, P. Khaki, and S. M. Bidhendi, "Alginate nanoparticles as a promising adjuvant and vaccine delivery system," Indian journal of pharmaceutical sciences, vol. 75, p. 442, 2013.
[56] D. Kühbeck, J. Mayr, M. Häring, M. Hofmann, F. Quignard, and D. D. Díaz, "Evaluation of the nitroaldol reaction in the presence of metal ion-crosslinked alginates," New Journal of Chemistry, vol. 39, pp. 2306-2315, 2015.
[57] A. M. Nikoo, R. Kadkhodaee, B. Ghorani, H. Razzaq, and N. Tucker, "Electrospray-assisted encapsulation of caffeine in alginate microhydrogels," Int J Biol Macromol, vol. 116, pp. 208-216, 2018.
[58] T. Khampieng, P. Aramwit, and P. Supaphol, "Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy," Int J Biol Macromol, vol. 80, pp. 636-43, 2015.
[59] M. Wang and Q. Zhao, "Electrospinning and Electrospray for Biomedical Applications," pp. 330-344, 2019.
[60] G. I. Taylor, "Disintegration of water drops in an electric field," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, pp. 383-397, 1964.
[61] N. A. Brown, Y. Zhu, G. K. German, X. Yong, and P. R. Chiarot, "Electrospray deposit structure of nanoparticle suspensions," Journal of Electrostatics, vol. 90, pp. 67-73, 2017.
[62] R. M. D. Soares, N. M. Siqueira, M. P. Prabhakaram, and S. Ramakrishna, "Electrospinning and electrospray of bio-based and natural polymers for biomaterials development," Mater Sci Eng C Mater Biol Appl, vol. 92, pp. 969-982, 2018.
[63] S. Kavadiya and P. Biswas, "Electrospray deposition of biomolecules: Applications, challenges, and recommendations," Journal of Aerosol Science, vol. 125, pp. 182-207, 2018.
[64] J. C. Stockert, A. Blazquez-Castro, M. Canete, R. W. Horobin, and A. Villanueva, "MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets," Acta Histochem, vol. 114, pp. 785-96, 2012.
[65] H. Daemi and M. Barikani, "Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles," Scientia Iranica, vol. 19, pp. 2023-2028, 2012.
[66] J. Mirtic, J. Ilas, and J. Kristl, "Influence of different classes of crosslinkers on alginate polyelectrolyte nanoparticle formation, thermodynamics and characteristics," Carbohydr Polym, vol. 181, pp. 93-102, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊