跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 15:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康家禎
研究生(外文):Kang, Chia-Chen
論文名稱:蝶豆功能性游離胺基酸萃取及其微膠囊化錠劑製作
論文名稱(外文):Extraction of Functional Amino Acid of Clitoria ternatea and Preparation of Microencapsulated Tablet
指導教授:蔡碧仁
指導教授(外文):Tsai, Pi-Jen
口試委員:翁義銘黃卓治
口試委員(外文):Weng, Yi-MingHuang, Cho-Chih
口試日期:2018-06-21
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:106
中文關鍵詞:蝶豆功能性胺基酸高壓處理微膠囊化
外文關鍵詞:Clitoria ternateaFunctional amino acidsHigh Pressure ProcessingMicroencapsulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現代人健康意識抬頭,常以保健食品作為預防疾病的第一道防線,功能性胺基酸食品也逐漸受到重視。支鏈胺基酸 (BCAA)、γ-胺基丁酸( GABA)、麩醯胺酸 (glutamine, Gln)及天門冬醯胺酸 (Asparagine, Asn)等為常見的功能性胺基酸,可調節關鍵性代謝途徑,以改善生物的健康,維持全身的動態平衡。近年來蝶豆 (Clitoria ternatea L.) 因富含花青素而被廣泛研究,但其胺基酸成份之相關研究甚少。故本研究對於蝶豆之功能性胺基酸分為三部分進行探討,第一部分為比較蝶豆不同部位(花、莖、葉子、種子)之胺基酸分佈,試圖找出功能性胺基酸較高之部位,並比較不同部位萃取液之抗氧化能力(DPPH自由基清除力、FRAP還原力)及成分(總多酚及總類黃酮)、色澤分析。第二部分以最適部位進行不同萃取方法(靜置萃取、超音波、高壓處理200 mPa及400 mPa)之功能性胺基酸含量、抗氧化與色澤及色素之探討。第三部分再將較佳萃取條件之萃液以壁材濃度10%、5%、2%,探討其微膠囊包埋率,並以田口法與感官品評製作蝶豆胺基酸錠,以應用於機能性產品之開發。
結果顯示,蝶豆不同部位中,以花具有較高的的總游離胺基酸及豐富的Asn含量,各達約4%及2%,而該部位也具有最高的DPPH自由基清除力與總多酚含量、BCAA、GABA及Gln含量,且各功能性胺基酸之間多具有顯著的相關性。蝶豆花經200 mPa與400 mPa高壓萃取處理者之總游離胺基酸含量,較超音波萃取含量高出1.55倍及1.45倍。功能性胺基酸萃出量以200 mPa > 400 mPa > 超音波萃取者,且以200 mPa高壓處理者之各功能性胺基酸含量皆較超音波萃取者高1.3-2倍,而高壓處理者 (200 mPa)也具有較高的FRAP還原力、DPPH自由基清除力及總酚含量,但高壓處理之花青素含量則較超聲波萃取者下降了22-26%。蝶豆花不同萃取方法中,總游離胺基酸、總酚及花青素之間具有顯著的高度相關性,DPPH與FRAP具有高度正相關。在微膠囊方面,壁材濃度10%、5%、2%中,包埋率皆高達96-99 %,因此以壁材濃度2%之微膠囊粉末進行製錠,而錠劑經由田口法與感官品評可得到最適之配方,故蝶豆花胺基酸錠是值得開發的蝶豆花新產品。
Due to the rising of health awareness, modern humans often use health foods as the first line of defense against disease, and the functional amino acid food has been taken seriously gradually. Some amino acids such as branched chain amino acids (BCAA), gamma-aminobutyric acid (GABA), glutamine and asparagine (Asn) are functional amino acids (FAA) which can regulate key metabolic pathways to improve health, growth and reproduction. Clitoria ternatea (CT) with common name, butterfly pea, has been widely studied because of its anthocyanin-rich petal. However, very little research has been done on its amino acid composition. In this study, the functional amino acids of the local CT were investigated. The first part was to compare the distribution of amino acids in different parts of the plant (flowers, stems, leaves, seeds), and compare their antioxidant components (total polyphenols and flavonoids) and capacities (DPPH free radical scavenging power, FRAP reducing power). In the second part, we discussed the effects of different extraction methods such as static extraction, ultrasonic and high pressure processing (HPP) with 200 mPa and 400 mPa on functional amino acid content and antioxidant capacities. In the third part, microencapsulation was conducted to protect the extract, and the amino acid tablets were further produced by the Taguchi method and the sensory evaluation.
The results showed that the flowers of the butterfly peas possess very high total free amino acid with abundant Asn content, up to about 4% and 2%, respectively. The flower also showed the highest DPPH radical scavenging power, total polyphenol content, BCAA, GABA, and Gln content. Significant correlations among various functional amino acids were also found.
As the effect of extraction method, the total free amino acid content was higher in the sample treated with HPP than that in the ultrasonic sample, around 1.55 and 1.45 times for 200mPa and 400 mPa, respectiveely. The FAA content was also higher in the HPP sample than in ultrasonic samples. Furthermore, sample treated with HPP 200 mPa exhibited the highest FRAP, DPPH scavenging and total phenols and total flavonoids.
In terms of microencapsules, the encapsulating efficiency was found up to 96-99% with 2%-10% wall material concentration. The microencapsulation powder was further made into tablet with the Taguchi method and the sensory evaluation. Therefore the tablet high in FAA from butterfly pea is a new product that worth developing.
中文摘要 I
Abstract III
謝誌 V
圖表目錄 IX
縮寫表 XII
第一章 前言 1
第二章 文獻回顧 2
2.1蝶豆 2
2.1.1蝶豆花 2
2.1.2蝶豆其他部位(根、莖、葉及種子) 2
2.2胺基酸 3
2.2.1功能性胺基酸 (Functional amino acids) 3
2.2.2天門冬醯胺酸(Asparagine, Asn) 8
2.2.3麩醯胺酸(Glutamine, Gln) 9
2.2.4支鏈胺基酸(Branched-chain amino acid, BCAAs) 9
2.2.5非蛋白質胺基酸: γ-胺基丁酸(γ-Aminobutyric acid, GABA) 11
2.3高壓加工(High-Pressure Processing, HPP) 12
2.3.1高壓加工原理 12
2.3.2高壓加工之特性 12
2.3.3高壓加工對蛋白質結構之影響 13
2.3.4 HPP對微生物之影響 19
2.3.4高壓對食品色澤之影響 19
2.4微膠囊化(Microencapsulation) 21
2.4.1壁材特性之影響 21
2.4.2微膠囊常見之粉末型態 22
2.5錠劑(Tablet) 25
2.5.1口服錠劑類型 25
2.5.2賦形劑 25
第三章 材料與方法 29
3.1試驗材料 29
3.2 試驗藥品 29
3.3試驗儀器 30
3.4 實驗設計 31
3.5試驗方法 35
3.5.1蝶豆萃取液之製備 35
3.5.2抗氧化能力分析 35
3.5.2.1 FRAP還原能力測定 35
3.5.2.2 DPPH自由基清除能力測定 35
3.5.3抗氧化成分分析 36
3.5.3.1總多酚化合物含量測定 36
3.5.3.2 總類黃酮含量 36
3.5.4色澤品質分析 36
3.5.4.1 Hunter L.a.b. value測定 36
3.5.4.2總花青素含量 37
3.5.5胺基酸成分分析 37
3.5.5.1總游離胺基酸含量測定 37
3.5.5.2 HPLC分析功能性胺基酸 37
3.5.6微膠囊化 41
3.5.7田口法 41
3.5.8錠劑製作 41
3.5.9官能品評試驗 42
3.5.10統計分析 42
第四章 結果與討論 45
4.1 蝶豆不同部位胺基酸之分析 45
4.1.1總游離胺基酸測定 45
4.1.2以HPLC 分析功能性胺基酸含量 48
4.1.3蝶豆不同部位功能性胺基酸之比例 54
4.1.4蝶豆不同部位色澤及花青素含量 56
4.1.5蝶豆不同部位抗氧化能力之探討 58
4.1.5.1 FRAP還原能力 58
4.1.5.2 DPPH清除自由基能力 59
4.1.6蝶豆不同部位抗氧化成分之探討 59
4.1.6.1總多酚化合物和總類黃酮含量 59
4.1.7蝶豆不同部位胺基酸與抗氧化能力及成分之相關性 65
4.1.8主成分分析 67
4.1.8.1蝶豆不同部位之主成分分析 67
4.2蝶豆花不同萃取方法之胺基酸探討 69
4.2.1蝶豆花不同萃取方法之總游離胺基酸測定 69
4.2.2以HPLC 分析蝶豆不同萃取方法之游離功能性胺基酸 71
4.2.3蝶豆花經高壓萃取後抗氧化能力之變化 76
4.2.4蝶豆花經高壓萃取後之抗氧化成分探討 76
4.2.5蝶豆花經高壓萃取後之色澤及色素變化 82
4.2.6蝶豆花不同萃取方法之胺基酸及抗氧化力之相關性 84
4.3蝶豆花胺基酸錠之製作 86
4.3.1蝶豆花高壓萃取液微膠囊化之探討 86
4.3.2蝶豆花胺基酸錠最適配方探討 88
第五章 結論 91
第六章 參考文獻 92
作者簡介 106
鄧書芳,連恆榮,林建良,戴雪詠及劉麗玲。2015。各國藥品賦形劑管理法規研析。食品藥物研究年報。第6期。
陳靜雯。2016。台灣藜酵素水解液中胺基酸及抗氧化活性之探討。國立屏東科技大學食品科學系碩士論文。
簡銘彣。2016。口服藥品百百種正確服用藥劑(記)得。振興醫訊。第237期。
Carl Ivar Branden, JohnTooze. 1999. Introduction to Protein Structure. 加蘭科學出版,第3頁
Larry R. Massom. 2007. Methods of Analysis for Functional Foods and Nutraceuticals. CRC Press出版。 第9章。
Adetuyi, F. O., & Ibrahim, T. A. (2014). Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Nigerian Food Journal, 32(2), 128-137.
Anurag, R. K., Manjunatha, M., Jha, S. N., & Kumari, L. (2016). Storage quality of shelled green peas under modified atmosphere packaging at different storage conditions. Journal of Food Science and Technology, 53(3), 1640-1648.
Barba, F. J., Esteve, M. J., & Frigola, A. (2013). Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Research International, 50(2), 545-549.
Barba, F. J., Poojary, M. M., Wang, J., Olsen, K., & Orlien, V. (2017). Effect of high pressure processing and storage on the free amino acids in seedlings of Brussels sprouts. Innovative Food Science & Emerging Technologies, 41, 188-192.
Bischoff, R., & Schlüter, H. (2012). Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications. Journal of Proteomics, 75(8), 2275-2296.
Borgenvik, M., Nordin, M., Mattsson, C. M., Enqvist, J. K., Blomstrand, E., & Ekblom, B. (2012). Alterations in amino acid concentrations in the plasma and muscle in human subjects during 24 h of simulated adventure racing. European Journal of Applied Physiology, 112(10), 3679-3688.
Bouchenak, M., & Lamri-Senhadji, M. (2013). Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. Journal of Medicinal Food, 16(3), 185-198.
Butz, P., & Tauscher, B. (2002). Emerging technologies: chemical aspects. Food Research International, 35(2), 279-284.
Chaieb, N., González, J. L., López-Mesas, M., Bouslama, M., & Valiente, M. (2011). Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.) genotypes cultivated in Tunisia. Food Research International, 44(4), 970-977.
Che Man, Y. B., Irwandi, J., & Abdullah, W. J. W. (1999). Effect of different types of maltodextrin and drying methods on physico‐chemical and sensory properties of encapsulated durian flavour. Journal of the Science of Food and Agriculture, 79(8), 1075-1080.
Chen, Y., Fu, X., Mei, X., Zhou, Y., Cheng, S., Zeng, L., & Yang, Z. (2017). Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics, 157, 10-17.
Chutipongtanate, S., Watcharatanyatip, K., Homvises, T., Jaturongkakul, K., & Thongboonkerd, V. (2012). Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta, 98, 123-129.
Cruzat, V. F., & Tirapegui, J. (2009). Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise. Nutrition, 25(4), 428-435.
Deliza, R., Rosenthal, A., Abadio, F. B. D., Silva, C. H., & Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. Journal of Food Engineering, 67(1), 241-246.
Deng, M., Li, D., Luo, J., Xiao, Y., Liu, H., Pan, Q., & Yan, J. (2017). The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant biotechnology journal, 15(10), 1250-1263.
Diana, M., Tres, A., Quílez, J., Llombart, M., & Rafecas, M. (2014). Spanish cheese screening and selection of lactic acid bacteria with high gamma-aminobutyric acid production. LWT-Food Science and Technology, 56(2), 351-355.
Diana, M., Quílez, J., & Rafecas, M. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of Functional Foods, 10, 407-420.
Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science & Technology, 21(10), 510-523.
Ferrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic. Drying Technology, 31(4), 470-478.
Gohel, M. C., & Jogani, P. D. (2005). A review of co-processed directly compressible excipients. Journal of Pharmacy & Pharmaceutical Sciences, 8(1), 76-93.
Gomez, S. M., & Kalamani, A. (2003). Butterfly pea (Clitoria ternatea): A nutritive multipurpose forage legume for the tropics-an overview. Pakistan Journal of Nutrition, 2(6), 374-379.
Götz, K. P., Chmielewski, F. M., Gödeke, K., Wolf, K., Jander, E., Sievers, S., & Rawel, H. M. (2017). Assessment of amino acids during winter rest and ontogenetic development in sweet cherry buds (Prunus avium L.). Scientia Horticulturae, 222, 102-110.
Gibbs, M. E., Richdale, A. L., & Ng, K. T. (1987). Effect of excess intracranial amino acids on memory: a behavioural survey. Neuroscience & Biobehavioral Reviews, 11(3), 331-339.
Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2017). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology.
Gualano, A. B., Bozza, T., Lopes De Campos, P., Roschel, H., Dos Santos Costa, A., Marquezi, L., & Benatti, F. (2011). Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. The Journal of Sports Medicine and Physical Fitness, 51(1), 82-88.
Hainida, K. E., Amin, I., Normah, H., & Esa, N. M. (2008). Nutritional and amino acid contents of differently treated Roselle (Hibiscus sabdariffa L.) seeds. Food chemistry, 111(4), 906-911.
Harakotr, B., Suriharn, B., Tangwongchai, R., Scott, M. P., & Lertrat, K. (2014). Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages. Journal of Functional Foods, 9, 109-118.
Hayakawa, K., Kimura, M., & Kamata, K. (2002). Mechanism underlying γ-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats. European journal of pharmacology, 438(1-2), 107-113.
Hendrickx, M., Ludikhuyze, L., Van den Broeck, I., & Weemaes, C. (1998). Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology, 9(5), 197-203.
Hildebrandt, T. M., Nesi, A. N., Araújo, W. L., & Braun, H. P. (2015). Amino acid catabolism in plants. Molecular Plant, 8(11), 1563-1579.
Hobson, G. E., Adams, P., & Dixon, T. J. (1983). Assessing the colour of tomato fruit during ripening. Journal of the Science of Food and Agriculture, 34(3), 286-292.
Huang, H. W., Lung, H. M., Yang, B. B., & Wang, C. Y. (2014). Responses of microorganisms to high hydrostatic pressure processing. Food Control, 40, 250-259.
Ito, A., & Higashiguchi, T. (1999). Effects of glutamine administration on liver regeneration following hepatectomy. Nutrition, 15(1), 23-28.
Jain, N. N., Ohal, C. C., Shroff, S. K., Bhutada, R. H., Somani, R. S., Kasture, V. S., & Kasture, S. B. (2003). Clitoria ternatea and the CNS. Pharmacology Biochemistry and Behavior, 75(3), 529-536.
Jin, H. J., Lee, J. H., Kim, D. H., Kim, K. T., Lee, G. W., Choi, S. J., Paik, H. D. 2015. Antioxidative and nitric oxide scavenging activity of branched-chain amino acids. Food Science and Biotechnology, 24, 1555-1558.
Jivraj, M., Martini, L. G., & Thomson, C. M. (2000). An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science & Technology Today, 3(2), 58-63.
Joo, C. G., Lee, K. H., Park, C., Joo, I. W., Choe, T. B., & Lee, B. C. (2012). Correlation of increased antioxidation with the phenolic compound and amino acids contents of Camellia sinensis leaf extracts following ultra high pressure extraction. Journal of Industrial and Engineering Chemistry, 18(2), 623-628.
Kaisoon, O., Siriamornpun, S., Weerapreeyakul, N., & Meeso, N. (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. Journal of Functional Foods, 3(2), 88-99.
Kim, M. Y., Lee, S. J., Ahn, J. K., Kim, E. H., Kim, M. J., Kim, S. L., & Song, H. K. (2009). Comparison of free amino acid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chemistry, 113(2), 386-393.
Kuo, Y. H., Rozan, P., Lambein, F., Frias, J., & Vidal-Valverde, C. (2004). Effects of different germination conditions on the contents of free protein and non-protein amino acids of commercial legumes. Food Chemistry, 86(4), 537-545.
Lasoń, W., Dudra-Jastrzębska, M., Rejdak, K., & Czuczwar, S. J. (2011). Basic mechanisms of antiepileptic drugs and their pharmacokinetic/pharmacodynamic interactions: an update. Pharmacological Reports, 63(2), 271-292.
Lauzier, B., Vaillant, F., Merlen, C., Gélinas, R., Bouchard, B., Rivard, M. E., & Chatham, J. C. (2013). Metabolic effects of glutamine on the heart: anaplerosis versus the hexosamine biosynthetic pathway. Journal of Molecular and Cellular Cardiology, 55, 92-100.
Li, P., Yin, YL., Li, D., Kim,SW., Wu, G.(2007).Amino acids and immune function. British Journal of Nutrition,98(2),237-252。
Linsberger-Martin, G., Weiglhofer, K., Phuong, T. P. T., & Berghofer, E. (2013). High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT-Food Science and Technology, 51(1), 331-336.
Liu, S., Xu, Q., Li, X., Wang, Y., Zhu, J., Ning, C., & Meng, X. (2016). Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innovative Food Science & Emerging Technologies, 36, 48-58.
Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379-385.
Maisuthisakul, P., Suttajit, M., & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food chemistry, 100(4), 1409-1418.
Marquezi, M. L., Roschel, H. A., Costa, A. D. S., Sawada, L. A., & Lancha Jr, A. H. (2003). Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. InternationalJournal of Sport Nutrition and Exercise Metabolism, 13(1), 65-75.
Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169-175.
Megías, C., Cortés-Giraldo, I., Giron-Calle, J., Alaiz, M., & Vioque, J. (2016). Free amino acids, including canavanine, in the seeds from 32 Vicia species belonging to subgenus Vicilla. Biocatalysis and Agricultural Biotechnology, 8, 126-129.
Mncwangi, N. P., & Viljoen, A. M. (2012). Quantitative variation of amino acids in Sutherlandia frutescens (Cancer bush)—towards setting parameters for quality control. South African Journal of Botany, 82, 46-52.
Moreda-Pineiro, A., Fisher, A., & Hill, S. J. (2003). The classification of tea according to region of origin using pattern recognition techniques and trace metal data. Journal of Food Composition and Analysis, 16(2), 195-211.
Morris, J. B. 2009. Characterization of butterfly pea (Clitoria ternatea L.) accessions for morphology, phenology, reproduction and potential nutraceutical, pharmaceutical trait utilization. Genetic Resources and Crop Evolution, 56(3), 421-427.
Muntean, M. V., Marian, O., Barbieru, V., Cătunescu, G. M., Ranta, O., Drocas, I., & Terhes, S. (2016). High Pressure Processing in Food Industry–Characteristics and Applications. Agriculture and Agricultural Science Procedia, 10, 377-383.
Myhrer, T. (2003). Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Research Reviews, 41(2-3), 268-287.
Narkprasom, K., Wang, S. P., Hsiao, S. M., & Tsai, P. J. (2012). Kinetics of Color Loss of Djulis (Chenopodium formosanum Koidz.) Extracts during Storage in Different Concentrations of Alcohol and Temperature. APCBEE Procedia, 2, 32-36.
Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit-and vegetable-based food products: a review. Trends in Food Science & Technology, 19(6), 320-328.
Osorio-Fierros, A., Cronin, K., Ring, D., Méndez-Zavala, A., Morales-Oyervides, L., & Montañez, J. C. (2017). Influence of granulation process parameters on food tablet properties formulated using natural powders (Opuntia ficus and Chlorella spp.). Powder Technology, 317, 281-286.
Palmer, E. E., Hayner, J., Sachdev, R., Cardamone, M., Kandula, T., Morris, P & Macintosh, R. (2015). Asparagine Synthetase Deficiency causes reduced proliferation of cells under conditions of limited asparagine. Molecular Genetics and Metabolism, 116(3), 178-186.
Paulo, F., & Santos, L. (2017). Design of experiments for microencapsulation applications: A review. Materials Science and Engineering: C, 77, 1327-1340.
Pasukamonset, P., Kwon, O., & Adisakwattana, S. (2016). Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocolloids, 61, 772-779.
Pavlova, N. N., Hui, S., Ghergurovich, J. M., Fan, J., Intlekofer, A. M., White, R. M., & Zhang, J. (2018). As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell Metabolism.
Penas, E., Préstamo, G., & Gomez, R. (2004). High pressure and the enzymatic hydrolysis of soybean whey proteins. Food Chemistry, 85(4), 641-648.
Penas, E., Préstamo, G., Polo, F., & Gomez, R. (2006). Enzymatic proteolysis, under high pressure of soybean whey: Analysis of peptides and the allergen Gly m 1 in the hydrolysates. Food Chemistry, 99(3), 569-573.
Peng, X., Yan, H., You, Z., Wang, P., & Wang, S. (2004). Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients. Burns, 30(2), 135-139.
Phrueksanan, W., Yibchok-anun, S., & Adisakwattana, S. (2014). Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes. Research in veterinary science, 97(2), 357-363.
Rai, K. S., Murthy, K. D., Karanth, K. S., Nalini, K., Rao, M. S., & Srinivasan, K. K. (2002). Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia, 73(7-8), 685-689.
Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1), 69-112.
Reddy, V. S., Dash, S., & Reddy, A. R. (1995). Anthocyanin pathway in rice (Oryza sativa L): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp. Theoretical and Applied Genetics, 91(2), 301-312.
Rockenbach, I. I., Rodrigues, E., Gonzaga, L. V., Caliari, V., Genovese, M. I., Gonçalves, A. E. D. S. S., & Fett, R. (2011). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127(1), 174-179.
Saikaew, K., Lertrat, K., Meenune, M., & Tangwongchai, R. (2018). Effect of high-pressure processing on colour, phytochemical contents and antioxidant activities of purple waxy corn (Zea mays L. var. ceratina) kernels. Food Chemistry, 243, 328-337.
Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food chemistry, 171, 144-152.
Shigematsu, T., Hayashi, M., Nakajima, K., Uno, Y., Sakano, A., Murakami, M., & Fujii, T. (2010). Effects of high hydrostatic pressure on distribution dynamics of free amino acids in water soaked brown rice grain. In Journal of Physics: Conference Series, 215(1), 012171. IOP Publishing.
Siendones, E., González-Reyes, J. A., Santos-Ocaña, C., Navas, P., & Córdoba, F. (1999). Biosynthesis of ascorbic acid in kidney bean. L-Galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiology, 120(3), 907-912.
Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International.
Song, M. M., Malacrida, C. R., Freitas, I. C., & Guilherme, I. (2017). Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT-Food Science and Technology, 84, 256-262.
Song, J., Liu, C., Li, D., & Gu, Z. (2013). Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr). Industrial Crops and Products, 50, 743-749.
Suthanthangjai, W., Kajda, P., & Zabetakis, I. (2005). The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Food Chemistry, 90(1-2), 193-197.
Terahara, N., Saito, N., Honda, T., Toki, K., & Osajima, Y. (1990). Acylated anthocyanins of Clitoria ternatea flowers and their acyl moieties. Phytochemistry, 29(3), 949-953.
Thoorens, G., Krier, F., Rozet, E., Carlin, B., & Evrard, B. (2015). Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability. International Journal of Pharmaceutics, 490(1-2), 47-54.
Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23-33.
Torres, J. A., & Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1), 95-112.
Ueno, S., Shigematsu, T., Watanabe, T., Nakajima, K., Murakami, M., Hayashi, M., & Fujii, T. (2009). Generation of free amino acids and γ-aminobutyric acid in water-soaked soybean by high-hydrostatic pressure processing. Journal of Agricultural and Food Chemistry, 58(2), 1208-1213.
Wahl, O., & Holzgrabe, U. (2016). Amino acid analysis for pharmacopoeial purposes. Talanta, 154, 150-163.
Wang, J., Wang, Y., Cheng, J., Wang, J., Sun, X., Sun, S., & Zhang, Z. (2018). Enhanced cross-category models for predicting the total polyphenols, caffeine and free amino acids contents in Chinese tea using NIR spectroscopy. LWT- Food Science and Technology, 96, 90-97.
Wu, G. (2010). Functional amino acids in growth, reproduction, and health. Advances in Nutrition, 1(1), 31-37.
Wu, J., Yang, C., Rong, Y., & Wang, Z. (2012). Preparation and nutritional characterization of perilla chewable tablet. Procedia Engineering, 37, 202-207.
Xia, Q., Wang, L., Xu, C., Mei, J., & Li, Y. (2017). Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food chemistry, 214, 533-542.
Youn, Y. S., Park, J. K., Jang, H. D., & Rhee, Y. W. (2011). Sequential hydration with anaerobic and heat treatment increases GABA (γ-aminobutyric acid) content in wheat. Food Chemistry, 129(4), 1631-1635.
Zhang, Y., Butelli, E., & Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81-90.
Zhang, J., Fan, J., Venneti, S., Cross, J. R., Takagi, T., Bhinder, B., & Pawel, B. (2014). Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Molecular Cell, 56(2), 205-218.
Zhao, C. J., Schieber, A., & Gänzle, M. G. (2016). Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations–A review. Food Research International, 89, 39-47.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top