[1] Al-Hamadi, H. and Soliman, S. (2005). Long-term/mid-term electric load forecasting based on short-term correlation and annual growth. Electr. Power Syst. Res, 74, 353-361.
[2] Bouktif, S., Fiaz, A., Ouni, A., Serhani, M. A. (2018). Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies,11,1636
[3] Cho, H., Goude, Y., Brossat, X. and Yao, Q. (2013). Modeling and Forecasting Daily Elec-tricity Load Curves: A Hybrid Approach. Journal of the American Statistical Association, 108, 7-21.
[4] Fan, S. and Hyndman, R. J. (2012). Short-Term Load Forecasting Based on a Semi-Parametric Additive Model. IEEE Transactions on Power Systems, 27, 134-141.
[5] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning (Vol.1). Cambridge: MIT press.
[6] Piegl, L., and Tiller, W. (2012). The NURBS book. Springer Science and Business Media.
[7] Ryu, S., Noh, J., Kim, H. (2016). Deep neural network based demand side short term load forecasting. Energies, 10, 3.
[8] Schmidhuber, J. (2015). Deep learning in neural networks: An overview.Neural networks, 61, 85-117.
[9] Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal
exponential smoothing. Journal of the Operational Research Society, 54, 799-805.
[10] 徐朮(2016)。電力負載量之短期預測,國立中山大學應用數學系碩士論文。[11] 董道廷(2017)。電力系統短期負載預測,國立中山大學電機工程學系碩士論文。[12] 江典聲(2018)。具有半參數模型基底之遞迴神經網路於短期電力負載之應用,國立中山大學應用數學系碩士論文。[13] 許元禹(2018)。電力負載量之短期預測之研究,國立中山大學應用數學系碩士論文。