|
[1]台灣電力公司-再生能源發電概況(2015, Jul. 14) [Online]. Avaliable: http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8 [2]N. N. Karnik and J. M. Mendel, “Introduction to type-2 fuzzy logic systems,” in Proc. IEEE WCCI, 1998, pp. 915–920. [3]N. N. Karnik, J. M. Mendel and Q. Liang, “Type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Systems., vol. 7, no. 6, pp. 643-658, 1999. [4]J. M. Mendel and R. I. John, “Type-2 fuzzy sets made simple,” IEEE Trans. Fuzzy Systems, vol. 10, no. 2, pp. 117-127, 2002. [5]J. M. Mendel, “Type-2 fuzzy sets: some questions and answers,” IEEE Connections, Newsletter of IEEE Neural Networks Society, vol. 1, pp. 10–13, 2003. [6]J. M. Mendel, “Type-2 fuzzy sets and systems: an overview,” IEEE Comput. Intell. Mag., vol. 2, no. 2, pp. 20–29, 2007. [7]Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems theory and design,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 535-550, 2000. [8]J. M. Mendel, R. I. John, and F. Liu, “On using type-1 fuzzy set mathematics to derive interval type-2 fuzzy logic systems,” in Proc. IEEE NAFIPS, 2005, pp. 528–533. [9]J. M. Mendel, R. I. John, and F. Liu, “Interval type-2 fuzzy logic systems made sample,” IEEE Trans. Fuzzy Systems, vol. 14, no. 6, pp. 808-821, 2006. [10]M. Biglarbegian, W. Melek, and J. M. Mendel, “Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments,” IEEE Trans. Ind. Electron, vol. 58, no. 4, pp. 1371-1384, 2011. [11]N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inform. Sci., vol. 132, pp. 195-220, 2001. [12]H. Wu and J. M. Mendel, “Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Systems., vol. 10, no. 5, pp. 622-639, 2002. [13]P. Z. Lin, C. M. Lin, C. F. Hsu, and T. T. Lee, “Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters,” IEE Proc. Electr. Power Appl., vol. 152, no. 4, pp. 1482-1488, 2006. [14]N. Altin, “Single phase grid interactive PV system with MPPT capability based on type-2 fuzzy logic systems,” in Proc. IEEE ICRERA, 2012, pp. 1-6. [15]P. Z. Lin, C. F. Hsu, and T. T. Lee, “Type-2 fuzzy logic controller design for buck DC-DC converters,” in Proc. IEEE Fuzzy Systems, 2008, pp. 365-370. [16]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. System, Man, Cybern, vol. SMC-15, no. 1, pp. 116–132, 1985. [17]H. K. Lam and F. H. F. Leung, “LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi–Sugeno's form,” IEEE Trans. TSMCB, vol. 37, no. 5, pp. 1396-1406, 2006. [18]D. Wang and X. H. Chang, “LMI-based control synthesis for continuous-time T-S fuzzy systems,” in Proc. IEEE CCDC, 2012, pp. 2707-2711. [19]P. S. Katkol, U. V. Patil, M. M. Havagondi, and A. B. Patil, “Stability analysis of T-S fuzzy system via LMI technique,” in Proc. IEEE ICCPCT, 2014, pp. 637-641. [20]K. Tanaka and M. Sugeno, “Stability analysis of fuzzy systems using Lyapunov's direct method,” in Proc. IEEE NAFIPS, 1990, pp. 133–136. [21]K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Set and Syst., vol. 45, no. 2, pp. 135–152, 1992. [22]H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Systems., vol. 4, no. 1, pp. 14-23, 1996 [23]K. Tanaka, and H. O. Wang, “Fuzzy control systems design and analysis: a linear matrix inequality approach,” New York: Wiley, John&Sons, Inc., 2001. [24]C. H. Fang, Y. S. Liu, S. W. Kau, L. Hong, and C. H. Lee, “A new LMI bases approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 14, no. 3, pp. 386-397, 2006. [25]H. K. Lam, F. H. F. Leung and P. K. S. Tam, “Fuzzy control of DC-DC switching converters based on T-S modeling approach,” in Proc. IEEE IECON, 1998, vol. 2, pp. 1052-1054. [26]H. K. Lam, T. H. Lee, F. H. F. Leung and P. K. S. Tam, “Fuzzy control of DC-DC switching converters: stability and robustness analysis,” in Proc. IEEE IECON, 2001, pp. 899-902. [27]Yuanlong Li and Zhicheng Ji, “An approach on T-S fuzzy model and control of buck-boost converter,” in Proc. IEEE WCICA, 2008, pp. 91-96. [28]C. S. Chiu, “T-S fuzzy maximum power point tracking control of solar power generation systems,” IEEE Trans. Energy Conversion, vol. 25, no. 4, pp. 1123-1132, 2010. [29]R. C. Garcia, W. I. Suemitsu and J. O. P. Pinto, “Takagi-Sugeno fuzzy model and control of a boost converter using Type-I internal model control,” in Proc. IEEE IECON, 2013, pp. 3794-3799. [30]K. Y. Lian, J. J. Liou and C. Y. Huang, “LMI-based integral fuzzy control of DC-DC converters,” IEEE Trans. Fuzzy Systems, vol. 14, no. 1, pp. 71-80, 2006. [31]H. K. Lam and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET Journal of Control Theory & Applications, vol. 3, no. 8, pp. 1093-1106, 2009. [32]H. K. Lam and L. D. Seneviratne, “Stability analysis of interval type-2 fuzzy-model-based control systems,” IEEE Trans. System, Man, Cybern., vol. 38, no. 3, pp. 617–628, 2008. [33]H. K. Lam and L. D. Seneviratne, “LMI-based stability conditions for interval type-2 fuzzy-model-based control systems,” in Proc. IEEE Fuzzy Systems., 2011, pp. 298-303. [34]M. Biglarbegian, W. W. Melek and J. M. Mendel,“On the stability of interval type-2 TSK fuzzy logic control systems,” IEEE Trans. System, Man, Cybern., vol. 40, no. 4, pp. 798-818, 2010. [35]G. R. Yu and C. H. Chang, “Robust T-S fuzzy control of a wheeled mobiled robot using genetic algorithms,” in Proc. Int. Automatic Control Conf., Yunlin, Taiwan, Nov. 2012.
|