跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葛紘穎
研究生(外文):Ge, Hong-Ying
論文名稱:氧化鋅摻鈷成長於透明可撓式白雲母基板之薄膜性質研究
論文名稱(外文):Structural, optical, transport properties of Co-doped Zinc oxide thin films on flexible transparent muscovite substrate
指導教授:林俊源林俊源引用關係朱英豪
指導教授(外文):Lin, Jiunn-YuanChu, Ying-Hao
口試委員:林俊源朱英豪孟心飛羅志偉
口試委員(外文):Lin, Jiunn-YuanChu, Ying-HaoMeng, Hsin-FeiLuo, Chih-Wei
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:氧化鋅摻鈷稀磁半導體可撓式基板白雲母薄膜
外文關鍵詞:Co-doped Zinc oxideDiluted magnetic semiconductorflexible substratemuscovitethin film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:1
為了追求自旋電子元件在應用上的更多可能性,本論文我們以脈衝式雷射系統在透明且具可彎曲性的白雲母基板上製備了過渡金屬摻雜半導體之一的氧化鋅摻鈷薄膜。經由一系列在結構、光學、電性,以及撓性上的研究,結果顯示出在與這種獨特基板的結合,氧化鋅摻鈷薄膜具備了卓越的物理性質。
藉由X射線繞射分析儀所進行的結構分析,顯示出氧化鋅摻鈷成長於雲母基板的製備上有很好的凡德瓦異質磊晶關係。並且,在原子力顯微鏡與穿透式電子顯微鏡的圖像裡,描繪出了樣品的形貌與表面粗糙度,以及在原子尺度之下的晶格排列。光學分析部分,透過紫外光-可見光光譜儀,樣品展現出大約80%的高透光度。令人驚奇地,成長於白雲母基板的氧化鋅摻鈷薄膜具有其他常見半導體所不具有之寬波長範圍的高透光(350奈米~2500奈米)。
除此之外,這個系統在電性量測的結果中也展現出它的半導體行為、室溫鐵磁性,以及在低溫時大約25%的磁阻。另外,氧化鋅摻鈷薄膜不僅僅具有以上提到的優異特性,經過一系列的撓性測試,得到了在彎曲狀態的光學、電性、與磁性行為,也表現出其機械靈活度和透明可撓自旋電子元件所必須具備的耐久性。
In order to search for broader possibilities of the application in spintronic devices, Co-doped ZnO (ZCO) thin films were grown on transparent and flexible muscovite (mica) via PLD process. Through a series of structural, optical, and transport studies, the results show that ZCO thin films possess remarkable physical properties under the combination with this kind of unique substrate.
In the structure analysis by X-ray diffraction (XRD), a successful fabrication of ZCO/mica by van der Waals heteroepitaxy was demonstrated. Also, surface roughness, surface morphologies and lattice arrangement in the atomic scale were characterized by atomic force microscopy (AFM) and transmission electron microscope (TEM). High transmittance of about 80% in visible region of samples was revealed in the optical analysis from ultraviolet-visible (UV-Vis) transmittance measurements. Surprisingly, unlike other common semiconductors, ZCO/mica has wide transparency window (350 nm-2500 nm).
The transport properties shows a semiconducting behavior, ferromagnetism at room temperature, and a high magnetoresistance of about 25 % at low temperatures. In addition to the unique properties mentioned above, we have also measured its optical, transport and magnetic properties in the bending state of the films. After a series of flexibility test, ZCO/mica thin films exhibit excellent mechanical flexibility and durability necessary for flexible transparent spintronic devices.
中文摘要 Ⅰ
Abstract in English Ⅲ
致謝 Ⅴ
圖次 XI
第一章 緒論 1
第二章 文獻回顧 3
2.1 雲母(Mica) 3
2.1.1 白雲母(Muscovite) 3
2.1.2 雲母在工業上的應用 4
2.2 稀磁半導體(Diluted Magnetic Semiconductor) 6
2.3 氧化鋅摻鈷(Cobalt-doped Zinc Oxide, ZCO) 8
2.3.1 氧化鋅摻鈷的電性 10
2.3.2 氧化鋅摻鈷的光學性質 12
2.3.3 氧化鋅摻鈷的磁性機制 14
2.3.3.1束縛磁極化子模型(Bound Magnetic Polaron) 14
2.3.3.2載子媒介交換作用(carrier-mediated exchange) 15
2.4 凡德瓦異質磊晶(Van der Waals Heteroepitaxy) 17
第三章 實驗方法、儀器及原理簡介 19
3.1 實驗流程 19
3.1.1 白雲母基板製備 19
3.1.2 脈衝雷射蒸鍍法(Pulsed Laser Deposition, PLD) 20
3.2 結構部分 21
3.2.1 XRD 量測原理 21
3.2.2 原子力顯微鏡(Atomic Force Microscopy, AFM) 22
3.2.3 穿透式電子顯微鏡(TEM) 24
3.3 光學部分 27
3.3.1紫外光/可見光/近紅外光譜儀(UV/Vis/Nir Spectrum) 27
3.4 電性部分 28
3.4.1 PPMS基本構造 28
3.4.2 van der Pauw 量測原理 30
3.4.3 van der Pauw 量測過程 31
3.4.4 霍爾效應量測原理(Hall effect) 32
3.5 磁性部分 34
3.5.1 超導量子干涉儀(Superconducting quantum interference device, SQUID) 34
3.6 撓性部分 36
3.6.1 撓曲電性量測儀 36
第四章 氧化鋅摻鈷之實驗結果與討論 38
4.1 晶體結構 38
4.2 光學分析 43
4.3 電性分析 45
4.3.1 電阻與磁阻 45
4.3.2 霍爾效應 47
4.4 磁性分析 49
4.5 撓性分析 51
4.5.1 撓曲光學性質 52
4.5.2 撓曲電性 55
4.5.3 撓曲磁性 61
第五章 結論 63
參考文獻 65
[1] Nicola A. Spaldin, Search for ferromagnetism in transition-metal doped piezoelectric ZnO, Phys. Rev. B 69, 125201(2004).
[2] 吳奕儒, 可撓式面板基板製程期待突破, 光連雙月刊第69期
2007.5
[3] Chatterjee, N.D., Johannes, W.S.: Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2[AlSi3O10(OH)2]. Contrib. Mineral. Petrol. 48, 89-114(1974).
[4] Fátima Martín-Hernández, Ann M Hirt, The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics 367, 13-28(2003).
[5] Dhriti Sundar Ghosh, Ultrathin metal transparent electrodes for the optoelectronics industry (2013).
[6] J.M. Kalita, G. Wary, Estimation of band gap of muscovite mineral
using thermoluminescence (TL) analysis, Physica B: Condensed Matter 485, 53–59(2016).
[7] Dolley, Thomas P. (2008) "Mica" in USGS 2008 Minerals Yearbook.
[8] 胡裕民, 物理雙月刊, 二十六卷四期, 587(2004).
[9] S.B Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater., 22(29): 3125–3155, 2010.
[10] Karzel, H., Potzel, W., Kofferlein, M., Schiessl, W., Steiner, M., Hiller, U., Kalvius, G. M., Mitchell, D. W., Das, T. P., Blaha, P., Schwarz, K., and Pasternak, M. P. (1996) Phys. Rev. B 53(17), 11425-11438.

[11] K. R. Kittilstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chambers, D. R. Gamelin. Direct Kinetic Correlation of Carriers und Ferromagnetism in Co2+:ZnO. Physical Review Letters, 97:037203, (2006).
[12] Guojian Li, Huimin Wang, Qiang Wang, Yue Zhao, Zhen Wang, Jiaojiao Du, Yonghui Ma, Structure and properties of Co-doped ZnO films prepared by thermal oxidization under a high magnetic field, Nanoscale Research Letters 10,112 (2015).
[13] Mahjabin Taskin, Jiban Podder,"Structural, Optical and Electrical Properties of Pure and Co-Doped ZnO Nano Fiber Thin Films Prepared by Spray Pyrolysis", App. Sci. Report. 2 (3), 2014: 107-113
[14] S. Ramachandran, Ashutosh Tiwari, and J. Narayan, Appl. Phys. Lett. 84, 5255 (2004).
[15] P. Koidl, Phys. Rev. B 15, 2493 (1977).
[16] Han Ki Kim, Kyoung Kook Kim, Seong Ju Park, Tae Yeon Seong, Young Soo Yoon, Japanese Journal of Applied Physics, Part 2: Letters, 41, L546 (2002).
[17] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald. Nat. Mater. 4(2), 173 (2005).
[18] Kazunori Sato, Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys. 39, pp. L555-L558, 2000.
[19] Koma, A., Sunouchi, K. and Miyajima, T., Fabrication and characterization of heterostructures with subnanometer thickness. Microelectronic Engineering, 2(1-3), 129-136 (1984).
[20] X. L. Li, C. X. Wang and G. W. Yang, Thermodynamic Theory of Growth of Nanostructures, Progress in Materials Science 64, 2014, 121-199.
[21] 陳建淼、洪連輝,科學online現代科技簡介 Introductory Modern Technology,原子力顯微鏡(一),(2009).
[22] Brundle, C. R., Evans, C. A. and Wilson S. (1992). Encyclopedia of
materials characterization: Surfaces, Interfaces, Thin films. Boston:
Butterworth-Heinemann.
[23] Quantum Design: http://www.qdusa.com/index.html
[24] I.A. Taimanov, arXiv: 1102.1445.
[25] 交通大學貴重/共同儀器中心:
http://rd.nctu.edu.tw/pc_instrument1&dbid=TojO
[26] Z. Yang, M. Biasini, W. P. Beyermann, M. B. Katz, O. K. Ezekoye, X. Q. Pan, Y. Pu, J. Shi, Z. Zuo, and J. L. Liu, Journal of Applied Physics 104, 113712 (2008).
[27] Hyeon-Jun Lee and Se-Young Jeong, Chae Ryong Cho, Chul Hong Park, Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020 (2002).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top