跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳芊嬑
研究生(外文):WU, CIAN-YI
論文名稱:以微流體架構探討磁珠與石墨烯修飾可撓式陣列型 TiO2 (NiO)葡萄糖與尿素感測器之感測特性、穩定性及即時感測系統之量測
論文名稱(外文):Investigation on Sensing Characteristics and Stability of Arrayed Flexible Glucose and Urea Biosensor Based on TiO2 and NiO Films Modified by Magnetic Beads and Graphene Oxide, and Integrated with Microfluidic Framework and Real-Time Sensing System
指導教授:周榮泉周榮泉引用關係
指導教授(外文):CHOU, JUNG-CHUAN
口試委員:許渭州廖義宏周學韜賴志賢
口試委員(外文):HSU WEI-CHOULIAO, YI-HUNGCHOU, HSUEH-TAOLAI, CHIH-HSIEN
口試日期:2018-07-02
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:256
中文關鍵詞:氧化鎳二氧化鈦尿素生醫感測器葡萄糖感測器氧化石墨烯磁珠微流體無線遠端量測
外文關鍵詞:Nickel oxideTitanium dioxideurea biosensorglucose sensorgraphene oxidemagnetic beadmicrofluidic frameworkwireless real-time sensing system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出以二種金屬氧化物分別被作為可撓式陣列型尿素感測器之基質,其金屬氧化物薄膜分別為氧化鎳(Nickel Oxide, NiO)及二氧化鈦(Titanium dioxide, TiO2),使用射頻濺鍍系統沉積感測薄膜,並以網版印刷技術備製陣列型導線及參考電極及環氧樹脂用以封裝感測器。然而,共架鍵結法被用來固化尿素酵素於生醫感測器之基質,並完成尿素感測器之備製。爾後,利用氧化石墨烯和磁珠修飾氧化鎳及二氧化鈦之感測薄膜,以提升其特性。並進行二種基質之生醫感測器的基礎之感測特性量測及響應時間、抗干擾性和檢測極限等特性。然而,再將其整合於微流體量測系統及無線測量系統,以測得感測器於動態情況下之感測特性及實現遠端量測。另外,本論文亦探討二氧化鈦基質用於開發葡萄糖感測器之可行性。最後,將國內外文獻與本文獻提出之尿素生醫感測器及葡萄糖感測器進行比較分析。
In this thesis, two kinds of metal oxide were proposed as martrix for flexible arrayed urea biosensor. The metal oxide films were Nickel Oxide (NiO) and Titanium dioxide (TiO2), respectively. The radio frequency sputtering system deposits the sensing film, and the screen printing technology were used to prepare the conductive arrayed wires and the reference electrode, and the epoxy is to encapsulate flexible arrayed urea biosensor. However, the covalent binding method is used to immobilize the enzyme between the matrix of the urea biosensor, and the preparation of the urea biosensors were completed. Afterwards, the sensing films of nickel oxide and titanium dioxide were modified by using graphene oxide and magnetic beads to improve its properties. The basically sensing properties of the two kinds of matrix biosensors were measured, and response time, interference and detection limit were also measured. However, the urea biosenosrs were integrated into the microfluidic measurement system and wireless real-time sensing system to measure the sensing properties of the urea biosensor under dynamic conditions, and it achieved remote monitoring. In addition, the feasibility of TiO2 matrix for the development of glucose sensors were discussed. Finally, we compared the literatures with the urea biosensors and glucose sensor in this thesis.
摘要 i
ABSTRACT ii
誌謝 iii
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1 1
1.1 Evolution 1
1.2 Motivation and Purpose 4
Chapter 2 8
Dissertation Outline 8
2.1 Sensing Materials 10
2.1.1 Titanium Dioxide 11
2.1.2 Nickel Oxide 12
2.2 Nanomaterials 14
2.2.1 Graphene Oxide 14
2.2.2 Magenetic Beads 15
2.3 Introduction and Theory to a Electrochemical Sensor 17
2.3.1 Sensing Mechanism and Theory 18
2.3.2 Sesning Characteristics and Physical Effect 21
2.4 Immobilized Enzyme and Fundamental 25
2.4.1 Immobilization Method of Enzyme 25
2.4.2 Reaction Mechanism of Enzymatic Urea Biosensor 27
2.4.3 Reaction Mechanism of Enzymatic Glucose Biosensor 27
2.5 Screen Printed Technology 29
2.6 Radio Frequency Sputtering 30
2.7 Measurement of Characteristics 31
2.7.1 Electrochemical Impedance Spectroscopy 31
2.7.2 Potentiometric Measurement System 33
2.7.3 Microfluidic Measurement System 34
2.7.4 Wireless Real-Time Sensing System 36
Chapter 3 48
3.1 Materials, chemicals and Instruments 49
3.1.1 Materials 49
3.1.2 Chemicals 51
3.1.3 Instruments 51
3.2 Flexible Arrayed Urea Biosensors 53
3.2.1 Fabrication of Urea Biosensors Based on NiO and TiO2 Film 53
3.2.2 Fabrication of Enzymatic Urea Biosensors Based on NiO and TiO2 Film 57
3.3Flexible Arrayed Urea Sensors Modified by GO and MBs 60
3.3.1 Preparation of Graphene Oxide (GO) 60
3.3.2 Fabrication of Urea Sensors Modified by GO 60
3.3.3 Fabrication of Urea Sensors Modified by GO and MBs 62
3.4 Flexible Arrayed Glucose Biosensors 66
3.4.1 Fabrication of Glucose Biosensors Based on TiO2 Film 66
3.4.2 Preparation of the Phosphate Buffered Saline (PBS) Solution 69
3.5 Fabrication of Glucose Biosensors Based on TiO2 Film Modified by GO and MBs 71
3.5.1 Preparation of Graphene Oxide (GO) 71
3.5.2 Fabrication of Glucose Sensors Modified by GO 71
3.5.3 Fabrication of Glucose Sensors Modified by GO and MBs 72
3.6 Analysis of Electrochemical Impedance Spectroscopy 75
3.7 Analysis of Sensing Characteristic under Static and Dynamic Condition 76
3.8 Monitoring using Wireless Real-Time Sensing System 78
Chapter 4 94
4.1 Analysis of the Sensing Film for Flexible Arrayed Biosensor 95
4.1.1 Characterization of the Sensing Films 95
4.1.2 Element Content of Sensing Film 96
4.1.3 Electrochemical Impedance Analysis of the Prepared Sensing Films 98
4.1.4 Roughness Analysis of Sensing Films 100
4.2 Analysis of Flexible Arrayed Urea Biosensor Based on TiO2 Film 103
4.2.1 Sensing Properties of Flexible Arrayed Urea Biosensor Based on Urease/ Glutaraldehyde/TiO2 Film 103
4.2.2 Sensing Properties of Flexible Arrayed Urea Biosensor Based on Urease/ Glutaraldehyde/GO/TiO2 Film 103
4.2.3 Performances of Flexible Arrayed Urea Biosensor Based on Urease-MBs/ Glutaraldehyde/GO/TiO2 Film 104
4.3 Analysis of Flexible Arrayed Urea Biosensor based on NiO Film 114
4.3.1 Sensing Properties of Flexible Arrayed Urea Biosensor Based on Urease/ Glutaraldehyde/NiO Film 114
4.3.2 Sensing Properties of Flexible Arrayed Urea Biosensor Based on Urease/ Glutaraldehyde/GO/NiO Film 114
4.3.3 Performances of Flexible Arrayed Urea Biosensor Based on Urease-MBs/ Glutaraldehyde/GO/TiO2 Film 116
4.4Analysis of Flexible Arrayed Glucose Biosensor based on TiO2 Film 124
4.4.1 Sensing Properties of Flexible Arrayed Glucose Biosensor Based on Nafion-GOD/TiO2 Film 124
4.4.2 Sensing Properties of Flexible Arrayed Glucose Biosensor Based on Nafion-GOD /GO/TiO2 Film 125
4.4.3 Sensing Properties of Flexible Arrayed Glucose Biosensor Based on MBs-Nafion-GOD/GO/TiO2 Film 127
4.5 Comparisons of the Urea Biosensors 129
4.5.1 Comparisons of Sensing Characteristic of Urea Sensor Based on TiO2 Film and NiO Film 129
4.5.2 Comparison of Results for Different Sensors Developed for Urea. 130
4.6 Comparisons of the Glucose Biosensors 133
Chapter 5 188
Chapter 6 194
References 196
Appendices: 224


[1]J. Leland C. Clark, and Champ Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals New York Academy of Sciences, vol. 2, no. 1, pp. 29-45, Oct. 1962.
[2]S. J. Updike and G. P. Hicks, “The enzyme electrode,” Nature, vol. 214, no. 5092, pp. 986-8, Jun. 1967.
[3]P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans Biomed Eng, vol. 17, no. 1, pp. 70-71, Jan. 1970.
[4]S. Caras and J. Janata, “Field effect transistor sensitive to penicillin,” Anal. Chem. , vol. 52, pp. 1935-1937, Oct. 1980.
[5]J. van der spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe,” Sensors and Actuators, vol. 4, pp. 291-298, Jan. 1983.
[6]Urea Cycle – Production of Urea. Available: https://pharmaxchange.info/2013/08/urea-cycle-production-of-urea/
[7]J. V. Leonard and A. A. Morris, “Urea cycle disorders,” Semin Neonatol, vol. 7, no. 1, pp. 27-35, Feb. 2002.
[8]M. Tyagi, M. Tomar, and V. Gupta, “NiO nanoparticle-based urea biosensor,” Biosensors and Bioelectronics, vol. 41, pp. 110-115, Mar. 2013.
[9]I. D. Weiner, W. E. Mitch, and J. M. Sands, “Urea and ammonia metabolism and the control of renal nitrogen excretion,” Clinical Journal of the American Society of Nephrology : CJASN, vol. 10, no. 8, pp. 1444-1458, Jul. 2015.
[10]Y. H. Liao and J. C. Chou, “Drift and hysteresis characteristics of drug sensors based on ruthenium dioxide membrane,” Sensors, vol. 8, no. 9, p. 5386, Sep. 2008.
[11]C. W. Liao, J. C. Chou, T. P. Sun, S. K. Hsiung, and J. H. Hsieh, “Investigation of the amperometric/potentiometric dual mode glucose biosensor,” Sensor Letters, vol. 6, pp. 836-839, Dec. 2008.
[12]J. C. Chou, H. M. Tsai, C. N. Shiao, and J. S. Lin, “Study and simulation of the drift behaviour of hydrogenated amorphous silicon gate pH-ISFET,” Sensors and Actuators B: Chemical, vol. 62, no. 2, pp. 97-101, Feb. 2000.
[13]C. Nien Hsuan, C. Jung Chuan, S. Tai-Ping, and H. Shen Kan, “Study on the disposable urea biosensors based on PVC-COOH membrane ammonium ion-selective electrodes,” IEEE Sensors Journal, vol. 6, no. 2, pp. 262-268, Mar. 2006.
[14]J. C. Chou, T. Y. Cheng, G. C. Ye, Y. H. Liao, S. Y. Yang, and H. T. Chou, “Fabrication and investigation of arrayed glucose biosensor based on microfluidic framework,” IEEE Sensors Journal, vol. 13, no. 11, pp. 4180-4187, Nov. 2013.
[15]Y. Lung Chin et al., “High-performance-readout integrated circuit for surface-micromachined bolometer arrays,” Proceedings of the SPIE, vol. 3899, pp. 124-132, , Nov. 1999.
[16]J. C. Chou and L. P. Liao, “Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method,” Thin Solid Films, vol. 476, no. 1, pp. 157-161, Apr. 2005.
[17]J. C. Chou, J. S. Chen, M. S. Huang, Y. H. Liao, and C. H. Lai, “The characteristic analysis of IGZO/Al pH sensor and glucose biosensor in static and dynamic measurements,” IEEE Sensors Journal, vol. 16, no. 23, pp. 8509-8516, Sep. 2016.
[18]S. C. Tseng, T. Y. Wu, J. C. Chou, Y. H. Liao, and C. H. Lai, “Research of non-ideal effect and dynamic measurement of the flexible-arrayed chlorine ion sensor,” IEEE Sensors Journal, vol. 16, no. 12, pp. 4683-4690, Apr. 2016.
[19]J. C. Chou, S. J. Yan, Y. H. Liao, C. H. Lai, J. S. Chen, and H. Y. Chen, “Characterization of flexible arrayed pH sensor based on nickel oxide films,” IEEE Sensors Journal, vol. 18, no. 2, pp. 605-612, Nov. 2018.
[20]J. C. Chou, Y. L. Tsai, T. Y. Cheng, Y. H. Liao, G. C. Ye, and S. Y. Yang, “Fabrication of arrayed flexible screen-printed glucose biosensor based on microfluidic framework,” IEEE Sensors Journal, vol. 14, no. 1, pp. 178-183, Jan. 2014.
[21]J. C. Chou, S. J. Yan, Y. H. Liao, C. H. Lai, Y. X. Wu, and C. Y. Wu, “Fabrication of flexible arrayed lactate biosensor based on immobilizing LDH-NAD(+) on NiO film modified by GO and MBs,” Sensors (Basel, Switzerland), vol. 17, no. 7, pp. 1-12, Jul. 2017.
[22]J. C. Chou, H. Y. Huang, Y. H. Liao, C. H. Lai, S. J. Yan, and C. Y. Wu, “The fabrication and sensing characteristics of arrayed flexible IGZO/Al urea biosensor modified by graphene oxide,” IEEE Transactions on Nanotechnology, vol. 16, no. 6, pp. 958-964, Aug. 2017.
[23]A. Nag, S. C. Mukhopadhyay, and J. Kosel, “Wearable flexible sensors: A review,” IEEE Sensors Journal, vol. 17, no. 13, pp. 3949-3960, May 2017.
[24]D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, no. 0, pp. 1807-1818, Jan. 1974.
[25]G. Rocchitta et al., “Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids,” Sensors, vol. 16, no. 6, pp. 1-21, May 2016.
[26]J. Wang et al., “Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching,” Dalton Transactions, vol. 44, no. 16, pp. 7662-7672, Jan. 2015.
[27]S.-C. Tseng et al., “Investigation of Sensitivities and Drift Effects of the Arrayed Flexible Chloride Sensor Based on RuO(2)/GO at Different Temperatures,” Sensors vol. 18, no. 2, pp. 632-644, Feb. 2018.
[28]D. Lee, J. Yoon, E. Lee, S. P. Woo, Y. S. Yoon, and D.-J. Kim, “NiO Nanostructured Catalysts By AC EPD for Non-Enzymatic Urea Sensors,” Meeting Abstracts, vol. MA2018-01, no. 42, p. 2458, Apr. 2018.
[29]V. N. Mishra and R. P. Agarwal, “Sensitivity, response and recovery time of SnO2 based thick-film sensor array for H2, CO, CH4 and LPG,” Microelectronics Journal, vol. 29, no. 11, pp. 861-874, Nov. 1998.
[30]L. Lan, Y. Yao, J. Ping, and Y. Ying, “Recent advances in nanomaterial-based biosensors for antibiotics detection,” Biosensors and Bioelectronics, vol. 91, pp. 504-514, May 2017.
[31]A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, Jul. 1972.
[32]K. Nakata and A. Fujishima, “TiO2 photocatalysis: design and applications,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 13, no. 3, pp. 169-189, Dec. 2012.
[33]J. Bai and B. Zhou, “Titanium dioxide nanomaterials for sensor applications,” Chemical Reviews, vol. 114, no. 19, pp. 10131-10176, Jun. 2014.
[34]L. Wei et al., “Enhanced performance of the dye-sensitized solar cells by the introduction of graphene oxide into the TiO2 photoanode,” Inorganic Chemistry Frontiers, vol. 5, no. 1, pp. 54-62, Aug. 2018.
[35]B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E. K. Suh, “TiO2 thin film gas sensor for monitoring ammonia,” Materials Characterization, vol. 58, no. 8, pp. 680-684, Aug. 2007.
[36]O. Alev, A. Kılıç, Ç. Çakırlar, S. Büyükköse, and Z. Öztürk, “Gas Sensing Properties of p-Co3O4/n-TiO2 Nanotube Heterostructures,” Sensors, vol. 18, pp. 1-11, Mar. 2018.
[37]T. Addabbo, A. Fort, M. Mugnaini, V. Vignoli, A. Baldi, and M. Bruzzi, Quartz-Crystal Microbalance Gas Sensors Based on TiO₂ Nanoparticles. 2018, pp. 1-9.
[38]Y. Kazuki, M. Takeshi, and T. Sakae, “Nickel oxide electrochromic thin films prepared by reactive DC magnetron sputtering,” Japanese Journal of Applied Physics, vol. 34, no. 5R, pp. 2440-2446, Mar. 1995.
[39]D. R. Sahu, T. J. Wu, S. C. Wang, and J. L. Huang, “Electrochromic behavior of NiO film prepared by e-beam evaporation,” Journal of Science: Advanced Materials and Devices, vol. 2, no. 2, pp. 225-232, Jun. 2017.
[40]Y. Wei, M. Chen, W. Liu, L. Li, and Y. Yan, “Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes,” Electrochimica Acta, vol. 247, pp. 107-115, Sep. 2017.
[41]M. L. S. Elizabeth A. G., Loïc L. P., Jérôme F., Gerrit B., Errol B., Yann P., Fabrice O., Anders H., Leif H., “A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V,” Angewandte Chemie International Edition, vol. 48, no. 24, pp. 4402-4405, May 2009.
[42]Z. Huang, G. Natu, Z. Ji, P. Hasin, and Y. Wu, “p-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy,” The Journal of Physical Chemistry C, vol. 115, no. 50, pp. 25109-25114, Dec. 2011.
[43]V. Nikolaou, A. Charisiadis, G. Charalambidis, A. G. Coutsolelos, and F. Odobel, “Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices,” Journal of Materials Chemistry A, vol. 5, no. 40, pp. 21077-21113, Sep. 2017.
[44]A. Neubecker, T. Pompl, T. Doll, W. Hansch, and I. Eisele, “Ozone-enhanced molecular beam deposition of nickel oxide (NiO) for sensor applications,” Thin Solid Films, vol. 310, no. 1, pp. 19-23, Nov. 1997.
[45]M. Guziewicz, P. Klata, J. Grochowski, K. Golaszewska, and E. Kaminska, “Hydrogen sensing properties of thin NiO films deposited by RF sputtering,” Procedia Engineering, vol. 47, pp. 746-749, Dec. 2012.
[46]E. Gagaoudakis et al., “Room Temperature p-Type NiO Nanostructure Thin Film Sensor for Hydrogen and Methane Detection,” Sensor Letters, vol. 15, no. 8, pp. 663-667, Nov. 2017.
[47]K. O. Ukoba, A. C. Eloka-Eboka, and F. L. Inambao, “Review of nanostructured NiO thin film deposition using the spray pyrolysis technique,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2900-2915, Feb. 2018.
[48]I. Sta, M. Jlassi, M. Hajji, and H. Ezzaouia, “Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol–gel spin coating method,” Thin Solid Films, vol. 555, pp. 131-137, Mar. 2014.
[49]K. Arora, M. Tomar, and V. Gupta, “Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film,” Biosensors and Bioelectronics, vol. 30, no. 1, pp. 333-336, Dec. 2011.
[50]M. Tyagi, M. Tomar, and V. Gupta, “Glad assisted synthesis of NiO nanorods for realization of enzymatic reagentless urea biosensor,” Biosensors and Bioelectronics, vol. 52, pp. 196-201, Feb. 2014.
[51]G. Kaur, M. Tomar, and V. Gupta, “Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection,” Analytical and Bioanalytical Chemistry, vol. 409, no. 8, pp. 1995-2005, Jan. 2017.
[52]A. B. Kunz, “Electronic structure of NiO,” Journal of Physics C: Solid State Physics, vol. 14, no. 16, p. L455, Nov. 1981.
[53]J. Qiu et al., “Electrochromic Properties of NiOx Films Deposited by DC Magnetron Sputtering,” Journal of Nanoscience and Nanotechnology, vol. 18, no. 6, pp. 4222-4229, Mar. 2018.
[54]P. Avouris and C. Dimitrakopoulos, “Graphene: synthesis and applications,” Materials Today, vol. 15, no. 3, pp. 86-97, Jan. 2012.
[55]W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and Its applications: a review,” Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52-71, Feb. 2010.
[56]M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, “A comprehensive review of glucose biosensors based on nanostructured metal-oxides,” Sensors (Basel), vol. 10, no. 5, pp. 4855-86, May 2010.
[57]Q. Zheng, Z. Li, J. Yang, and J.-K. Kim, “Graphene oxide-based transparent conductive films,” Progress in Materials Science, vol. 64, pp. 200-247, Dec. 2014.
[58]C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” TrAC Trends in Analytical Chemistry, vol. 91, pp. 53-66, Jun. 2017.
[59]D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chemical Reviews, vol. 112, no. 11, pp. 6027-6053, Nov. 2012.
[60]K. Khun et al., “Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode,” Sensors and Actuators B: Chemical, vol. 173, pp. 698-703, Oct. 2012.
[61]C. Ruffert, “Magnetic bead—magic bullet,” Micromachines, vol. 7, no. 2, pp. 1-17, Jun. 2016.
[62]W. Putzbach and N. Ronkainen, “Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review,” Sensors, vol. 13, no. 4, pp. 4811-4840, Apr. 2013.
[63]L. Manjakkal, E. Djurdjic, K. Cvejin, J. Kulawik, K. Zaraska, and D. Szwagierczak, “Electrochemical impedance spectroscopic analysis of RuO2 based thick film pH sensors,” Electrochimica Acta, vol. 168, pp. 246-255, Jun. 2015.
[64]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, and G. Stojanovic, “Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy,” Journal of Electroanalytical Chemistry, vol. 759, pp. 82-90, Dec. 2015.
[65]L. Tous, Nickel/Copper Plated Contacts as an Alternative to Silver Screen Printing for the Front Side Metallization of Industrial High Efficiency Silicon Solar Cells. 2014.
[66]S. Srinivasan, “Electrode/electrolyte interfaces: structure and kinetics of charge transfer,” in Fuel Cells: From Fundamentals to Applications, S. Srinivasan, Ed. Boston, MA: Springer US, 2006, pp. 27-92.
[67]S. Levine, “Adsorption isotherms in the electric double layer and the discreteness-of-charge effect,” Journal of Colloid and Interface Science, vol. 37, no. 3, pp. 619-634, Nov. 1971.
[68]Double layer (surface science). Available: https://en.wikipedia.org/wiki/Double_layer_(surface_science)
[69]A. G. a. J. Stewart, “Organic Synthesis Using Biocatalysis,” 1st ed.: Elsevier, 2016, pp. 99-126.
[70]J. U. Kim, “Electrical double layer: revisit based on boundary conditions,” pp. 1-12, Nov. 2005.
[71]A. Covington, R. G. Bates, and R. Durst, Definition of pH scales, standard reference values, measurement of pH and related terminology (Provisional). 1983, pp. 1467-1476.
[72]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, and R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sensors and Actuators B: Chemical, vol. 204, pp. 57-67, Dec. 2014.
[73]J. C. Chou, K. Y. Huang, and J. S. Lin, “Simulation of time-dependent effects of pH-ISFETs,” Sensors and Actuators B: Chemical, vol. 62, no. 2, pp. 88-91, Feb. 2000.
[74]K. Kalantarzadeh and B. Fry, “Nanotechnology-enabled sensors,” in
Springer-Verlag US, 2008, ch. 2, pp. 13-62.
[75]Z. Yang, Z. Ye, B. Zhao, X. Zong, and P. Wang, “A rapid response time and highly sensitive amperometric glucose biosensor based on ZnO nanorod via citric acid-assisted annealing route,” Physica E: Low-dimensional Systems and Nanostructures, vol. 42, no. 6, pp. 1830-1833, Apr. 2010.
[76]A. Salmanipour, M. A. Karimi, A. Mohadesi, M. A. Taher, and S. Shafiee, “A Review on fundamentals and progress in urea biosensors,” Biquarterly Iranian Journal of Analytical Chemistry, vol. 3, no. 1, pp. 1-26, May 2015.
[77]A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: A novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, no. 1, pp. 244-248, Jan. 1990.
[78]M. Singh, N. Verma, A. Garg, and N. Redhu, “Urea biosensors,” Sensors and Actuators B: Chemical, vol. 134, no. 1, pp. 345-351, Aug. 2008.
[79]M. Ghiaci, M. Tghizadeh, A. A. Ensafi, N. Zandi-Atashbar, and B. Rezaei, “Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection,” Journal of the Taiwan Institute of Chemical Engineers, vol. 63, pp. 39-45, Jun. 2016.
[80]D. Gough and T. Bremer, Immobilized glucose oxidase in implantable glucose sensor technology. 2000, pp. 377-80.
[81]S. M. Usman Ali, O. Nur, M. Willander, and B. Danielsson, “A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire,” Sensors and Actuators B: Chemical, vol. 145, no. 2, pp. 869-874, Mar. 2010.
[82]I. S. Kucherenko, O. O. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, S. V. Dzyadevych, and A. P. Soldatkin, “Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase,” Talanta, vol. 144, pp. 604-611, Nov. 2015.
[83]R. Nagata, K. Yokoyama, S. A. Clark, and I. Karube, “A glucose sensor fabricated by the screen printing technique,” Biosensors and Bioelectronics, vol. 10, no. 3, pp. 261-267, Jan. 1995.
[84]A. Hayat and J. L. Marty, “Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring,” Sensors (Basel, Switzerland), vol. 14, no. 6, pp. 10432-10453, Jun. 2014.
[85]K. C. Honeychurch and J. P. Hart, “Screen-printed electrochemical sensors for monitoring metal pollutants,” TrAC Trends in Analytical Chemistry, vol. 22, no. 7, pp. 456-469, Jul. 2003.
[86]V. F. Lvovich, “Fundamentals of electrochemical impedance spectroscopy,” in Impedance Spectroscopy: John Wiley & Sons, Inc., 2012, pp. 1-21.
[87]電化學阻抗譜(EIS). Available: https://www.yidianzixun.tw/article/0HDa1v6m
[88]V. F. Lvovich, “Applications to electrochemical and dielectric phenomena,” in Impedance spectroscopy: 1st ed.: Wiley, 2012, pp. 758-768.
[89]R. Shin Su et al., “Label‐Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes,” Advanced Science, vol. 4, no. 5, pp. 1600522-1600536, May 2017.
[90]Z. Chen and P. W. Alexander, “Potentiometric detection of carboxylic acids by flow injection analysis using a tungsten oxide electrode,” Analytica Chimica Acta, vol. 332, no. 2, pp. 187-192, Oct. 1996.
[91]S. Prentner, D. M. Allen, L. Larcombe, S. Marson, K. Jenkins, and M. Saumer, "Effects of channel surface finish on blood flow in microfluidic devices," in 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, 2009, pp. 51-54.
[92]A. Salim and S. Lim, “Review of recent metamaterial microfluidic sensors,” Sensors (Basel, Switzerland), vol. 18, no. 1, pp. 232-247, Jan. 2018.
[93]G. Luka et al., “Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications,” Sensors (Basel, Switzerland), vol. 15, no. 12, pp. 30011-30031, Nov. 2015.
[94]C. J. Chuan, C. Y. Jhang, L. Y. Hung, J. W. Lin, R. T. Chen, and C. H. Tao, “Research of stability and interference with the potentiometric flexible arrayed glucose sensor based on microfluidic framework,” IEEE Transactions on Semiconductor Manufacturing, vol. 27, no. 4, pp. 523-529, Sep. 2014.
[95]ZigBee. Available: https://zh.wikipedia.org/wiki/ZigBee
[96]How WiMAX Works. Available: https://computer.howstuffworks.com/wimax2.htm
[97]5 Types of Wireless Technology For The IoT. Available: https://www.link-labs.com/blog/types-of-wireless-technology
[98]V. S. N. A, S. Thyagarajan, V. B. P. T, and M. M, "Real-Time Implementation of Low Cost ZigBee Based Motion Detection System," in 2015 Fifth International Conference on Communication Systems and Network Technologies, 2015, pp. 323-327.
[99]L. Ruiz-Garcia, P. Barreiro, and J. I. Robla, “Performance of ZigBee-Based wireless sensor nodes for real-time monitoring of fruit logistics,” Journal of Food Engineering, vol. 87, no. 3, pp. 405-415, Aug. 2008.
[100]C. M. Ramya, M. Shanmugaraj, and R. Prabakaran, "Study on ZigBee technology," in 2011 3rd International Conference on Electronics Computer Technology, 2011, vol. 6, pp. 297-301.
[101]J. S. Chen, "The research of integrating the differential reference electrode as well as magnetic beads and graphene modified in arrayed flexible IGZO glucose biosensor based on microfluidic framework and the fabrication of multifunctional enzyme real-time sensing system," Master Thesis, Microelectronic and Optoelectronic Engineering, Department of Electronic Engineering from National Yunlin University of Science and Technology, 2016.
[102]P. Kassal, M. D. Steinberg, and I. Steinberg, “Wireless chemical sensors and biosensors: A review,” vol. 266, pp. 1-15, Mar. 2018.
[103]D. Maurya, A. Sardarinejad, and K. Alameh, “Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview,” Coatings, vol. 4, no. 4, pp. 756-771, Dec. 2014.
[104]Sputter deposition. Available: https://en.wikipedia.org/wiki/Sputter_deposition
[105]K. Wasa, “2 - Sputtering Phenomena,” in Handbook of Sputtering Technology (Second Edition), K. Wasa, I. Kanno, and H. Kotera, Eds. Oxford: William Andrew Publishing, 2012, pp. 41-75.
[106]W. S. Shih et al., “Thin film transistors based on TiO2 fabricated by using radio-frequency magnetron sputtering,” Journal of Physics and Chemistry of Solids, vol. 71, no. 12, pp. 1760-1762, Dec. 2010.
[107]D. V. Ribeiro, C. A. C. Souza, and J. C. C. Abrantes, “Use of electrochemical Impedance spectroscopy (EIS) to monitoring the corrosion of reinforced concrete,” Revista IBRACON de Estruturas e Materiais, vol. 8, no. 4, pp. 529-546, Feb. 2015.
[108]S. Gadipelli and Z. X. Guo, “Graphene-based materials: Synthesis and gas sorption, storage and separation,” Progress in Materials Science, vol. 69, pp. 1-60, Mar. 2015.
[109]S. E. Oraby and A. M. Alaskari, “Atomic force microscopy (AFM)topographical surface characterization of multilayer-coated and uncoated carbide inserts,” International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol. 4, pp. 976-988, Mar. 2010.
[110]A. Sassolas, A. Hayat, and J.-L. Marty, “Immobilization of enzymes on magnetic beads through affinity interactions,” in Immobilization of Enzymes and Cells: Third Edition, J. M. Guisan, Ed. Totowa, NJ: Humana Press, 2013, pp. 139-148.
[111]D. Yang, X. Wang, Q. Ai, J. Shi, and Z. Jiang, “Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly(dopamine) and poly(norepinephrine),” RSC Advances, vol. 5, no. 53, pp. 42461-42467, Mar. 2015.
[112]G. F. Bickerstaff, “Immobilization of enzymes and cells,” in Immobilization of Enzymes, G. F. Bickerstaff, Ed. Totowa, NJ: Humana Press, 1997, ch. 2, pp. 36-57.
[113]W. Frenzel, C. Y. Liu, and J. Oleksy-Frenzel, “Enhancement of sensors selectivity by gas-diffusion separation: Part 1. Flow-injection potentiometric determination of cyanide with a metallic silver-wire electrode,” Analytica Chimica Acta, vol. 233, pp. 77-84, Jan. 1990.
[114]P. Y. Ju, C. H. Tsai, L. M. Fu, and C. H. Lin, "Microfluidic flow meter and viscometer utilizing flow-induced vibration on an optic fiber cantilever," in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011, pp. 1428-1431.
[115]J. Zhang, J. Ma, S. Zhang, W. Wang, and Z. Chen, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres,” Sensors and Actuators B: Chemical, vol. 211, pp. 385-391, May 2015.
[116]M. Israr-Qadir, S. Jamil-Rana, O. Nur, and M. Willander, “Zinc Oxide-Based Self-Powered Potentiometric Chemical Sensors for Biomolecules and Metal Ions,” Sensors, vol. 17, no. 7, pp. 1645-1661, Feb. 2017.
[117]P. R. Solanki, A. Kaushik, V. V. Agrawal, and B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” Npg Asia Materials, Review vol. 3, p. 17, Jan. 2011.
[118]M. Willander et al., “Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices,” Journal of Materials Chemistry, vol. 19, no. 7, pp. 1006-1018, Sep. 2009.
[119]L. T. Nguyen and H. H. Yoon, “Potentiometric urea biosensor based on carbon nanotubes and polyion complex film,” J Nanosci Nanotechnol, vol. 15, no. 2, pp. 1150-1153, Feb. 2015.
[120]C. H. Hsu, Y. W. Hsu, and Y. C. Weng, “A novel potentiometric sensor based on urease/ bovine serum albumin-poly(3,4-ethylenedioxythiophene)/Pt for urea detection,” vol. 71, no. 4, pp. 277-282, Mar. 2016.
[121]S. Jakhar and C. S. Pundir, “Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor,” Biosensors and Bioelectronics, vol. 100, pp. 242-250, Feb. 2018.
[122]T. M. C. S. Kawan, M. W. Sulistiani and S. Manihar, “Urease immobilized potentiometric biosensor for determination of urea”,, “Urease immobilized potentiometric biosensor for determination of urea,” S. Kawan, T. M. Chrisdayanti, M. W. Sulistiani and S. Manihar, vol. 57A, pp. 175-180, Feb. 2018.
[123]H. D. Mai, Fabrication of Nickel Oxide (NiO)-Based Chemical Sensors. National Cheng Kung University Institute of Microelectronics, 2015.
[124]V. I. Ternovskii, V. Chernokhvostov Iu, M. G. Fomkina, and M. M. Montrel, “A potentiometric sensor designed on the basis of urease immobilized in polyelectrolyte microcapsules,” (in rus), Biofizika, vol. 52, no. 5, pp. 825-829, Oct. 2007.
[125]J. C. Chou, J. S. Chen, Y. H. Liao, C. H. Lai, S. J. Yan, and T. Y. Wu, “Fabrication and characteristic analysis for enzymatic glucose biosensor modified by graphene oxide and magnetic beads based on microfluidic framework,” IEEE Sensors Journal, vol. 17, no. 6, pp. 1741-1748, Feb. 2017.
[126]R. T. Chen, "Integrating the fabrication of the differential reference electrode and graphene modified in arrayed flexible glucose biosensor system based on magnetic beads and microfluidic framework as well as the measurement and impedance analysis of the system," Master, National Yunlin University of Science and Technology, 2015.
[127]Z. Yang, C. Zhang, J. Zhang, and W. Bai, “Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nanoparticles,” Biosensors and Bioelectronics, vol. 51, pp. 268-273, Jan. 2014.
[128]A. Fulati et al., “An intracellular glucose biosensor based on nanoflake ZnO,” Sensors and Actuators B: Chemical, vol. 150, no. 2, pp. 673-680, Oct. 2010.
[129]M. Parrilla, R. Cánovas, and F. J. Andrade, “Paper-based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids,” Biosensors and Bioelectronics, vol. 90, pp. 110-116, Apr. 2017.
[130]S. K. Jha, A. Topkar, and S. F. D'Souza, “Development of potentiometric urea biosensor based on urease immobilized in PVA–PAA composite matrix for estimation of blood urea nitrogen (BUN),” Journal of Biochemical and Biophysical Methods, vol. 70, no. 6, pp. 1145-1150, Apr. 2008.
[131]S. J. Yan, "The analysis of the stability, interference, and impedance for magnetic beads and graphene modified in arrayed flexible nickel oxide glucose and lactate biosensor based on microfluidic framework and the measurement of real-time sensing system," 2017.
[132]P. Li, H. Gao, and Y. Wang, “Uptake of Ni(II) from aqueous solution onto graphene oxide: Investigated by batch and modeling techniques,” Journal of Molecular Liquids, vol. 227, pp. 303-308, Feb. 2017.
[133]J. Wang, Z. Chen, and B. Chen, “Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets,” Environmental Science & Technology, vol. 48, no. 9, pp. 4817-4825, May 2014.
[134]M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Letters, vol. 8, no. 10, pp. 3498-3502, Oct. 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 整合微流體之葡萄糖檢測及自動化胰島素注射系統
2. 結合磁珠技術的快速檢測登革熱感染及流感病毒感染之微流體晶片
3. 二氧化鈦與氧化鋁共濺鍍電阻式記憶體之特性研究
4. 延伸閘極式金屬氧化物酸鹼度感測器之製備與特性研究
5. 銀/二氧化鈦/石墨烯和磷酸銀/二氧化鈦/氧化石墨烯三元奈米複合物光觸媒之光催化特性研究
6. 以氧化石墨烯/金屬改質活性碳在電容去鹽之應用
7. 製備含ZrO2/TiO2複合光觸媒及其分解有機物之研究
8. 以氧化石墨烯修飾與微流體架構研製整合於陣列型可撓式氯離子生醫感測系統之量測與阻抗分析
9. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型IGZO/Al抗壞血酸生醫感測器特性、等效電路及即時感測系統之量測
10. 以氧化石墨烯改質二氧化鈦對其光催化效果研究
11. 製備含ZrO2/TiO2光觸媒奈米纖維及其分解有機物之研究
12. 探討以石墨烯與磁珠整合氧化鋅奈米線修飾 可撓式陣列型二氧化鈦染料敏化太陽能電池於低照度 之光電特性與大面積串並聯等效電路的阻抗分析
13. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型氧化鎳葡萄糖與乳酸感測器之穩定性、干擾性、阻抗分析及即時感測系統之量測
14. 水熱法製備氧化鎳/還原氧化石墨烯複合材料於超級電容之應用
15. 電泳沉積二氧化鈦/氧化石墨烯於電紡 三醋酸纖維膜油水分離之研究
 
無相關期刊
 
1. 探討以石墨烯修飾IGZO工作電極雙層結構可撓式陣列型TiO2染敏太陽能電池模組於低照度之光伏特性 、等效電路分析與即時監控系統之研究
2. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型IGZO/Al抗壞血酸生醫感測器特性、等效電路及即時感測系統之量測
3. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型氧化鎳葡萄糖與乳酸感測器之穩定性、干擾性、阻抗分析及即時感測系統之量測
4. 以微流體架構研究差動對參考電極整合磁珠與石墨烯修飾陣列型可撓式IGZO葡萄糖感測器與多功能酵素即時感測系統之研製
5. 探討以石墨烯與磁珠整合氧化鋅奈米線修飾 可撓式陣列型二氧化鈦染料敏化太陽能電池於低照度 之光電特性與大面積串並聯等效電路的阻抗分析
6. 以LabVIEW設計實現具數據融合之量測系統應用於可撓式陣列型酸鹼感測器與葡萄糖生醫感測器
7. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型AZO與ZnO葡萄糖與抗壞血酸生醫感測器特性、等效電路之阻抗分析與讀出電路之設計
8. 非晶氧化銦鎵鋅薄膜電晶體之汲極寄生場板效應之研究
9. 以石墨烯修飾磁珠與微流體架構研製差動對參考電極整合於陣列型可撓式葡萄糖生醫感測系統之量測與阻抗分析
10. 以微流體架構及改良型讀出電路研究銀奈米線修飾 可撓式陣列型非酵素電壓式CZO薄膜 葡萄糖生醫感測器
11. 以溶膠凝膠法研製銦摻雜氧化鋅薄膜應用於電阻式記憶體之研究
12. 以石墨烯修飾之陣列型染料敏化太陽能電池的 光電特性與阻抗分析
13. 整合磁珠與微流體架構研製可撓式陣列型葡萄糖生醫感測器
14. 探討以還原氧化石墨烯修飾鉑對電極設計AZO 光陽極串並聯染料敏化太陽能電池模組於低照度之 光伏量測、等效電路之阻抗分析與應用
15. 利用離體生物技術固定多個酵素生產3-羥基丙酸