跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周應照
研究生(外文):Ying Chao Chou
論文名稱:合併使用生物可降解支架模擬骨膜及奈米薄膜持續釋放利多卡因來有效及無痛治療長骨分節性骨折並骨膜剝離損傷
論文名稱(外文):Combination of the biodegradable stent mimicking as periosteum and the nanofibous membrane for sustainable release of lidocaine for effective and painless treatment of a segmental long bone fracture with periosteal stripping injury
指導教授:劉士榮劉士榮引用關係
指導教授(外文):S. J. Liu
學位類別:博士
校院名稱:長庚大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:120
中文關鍵詞:仿生骨膜生物可吸收聚己內酯聚乳酸聚甘醇酸共聚物奈米薄膜環狀骨膜疼痛阻斷
外文關鍵詞:biomimetic periosteumbiodegradable polycaprolactone (PCL)poly([dl]-lactide-co-glycolide) (PLGA) nanofibrous membranecircumferential periosteal block
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
治療長骨的粉碎骨折常帶給骨科醫師很大的挑戰,因為這類的損傷常合併嚴重的骨粉碎及相當的骨膜剝離損傷,這樣的傷害常導致傷口感染、軟組織缺損、及骨癒合不良等後遺症。骨膜是一個面狀的結構覆蓋在長骨的周圍,因為結構裡的高度血管化、富含骨再生細胞、擁有骨引導再生因子及具備骨傳導結構,使得骨膜成為一個骨癒合修復過程中不可或缺的結構。可惜的是,以往的文獻報告比較少提到有關如何處裡骨膜來達到促進長骨分節粉碎骨折並骨膜剝離損傷時的治療。
本研究的目的就是希望能利用生物可吸收性的聚己內酯(PCL)支架來做為骨膜結構用以治療長骨分節性骨折。我們建立了一個白兔大腿股骨分節性骨折並利用克式釘(Kirscher-wire)固定的模型,我們比較在這個白兔股骨分節性粉碎骨折的情形下,有使用或沒有使用支架來重建骨膜,是否會帶來不一樣的臨床結果。一個由聚乳酸聚甘醇酸共聚物(PLGA)所製成的帶藥奈米薄膜,其中富含利多卡因(lidocaine)止痛藥、萬古黴素(vancomycin)及頭孢曲松鈉(ceftazidime)抗生素的也被製備作為骨膜的一部分,我們假設這樣複合的仿生骨膜能提供骨引導因子的功能,建立血管增生及抑制感染的發生,來促進粉碎骨折的癒合。
這個奈米薄膜的藥物釋放情形是利用高效能液相層析儀(HPLC)定量分析及微生物盤狀擴散法來檢測。而臨床的結果包括術後第二、第六及第十二周的X光檢查檢測骨癒合情形。動物的活力是在一定時間內紀錄動物在特製的動物活力行為柵欄中的總活動量而定。當最後動物犧牲後,他的大腿股骨再進行扭力及硬度測試。
實驗結果顯示在一個半月及三個月的不同時段的組別中,有使用骨膜支架的白兔都擁有較好的骨折斷端處骨痂形成、較強的扭力及較好的骨硬度。在藥物釋放方面,實驗結果顯示奈米薄膜釋放利多卡因可以維持有效劑量達三週以上,在生物活力測試上顯示奈米薄膜釋放萬古黴素(vancomycin)及頭孢曲松鈉(ceftazidime)抗生素達有效制菌量達三十天以上,活力測試上也顯示有帶藥的白兔組別比沒有帶藥的組別擁有更好的總活動量。
總結來看,這樣的一個人工複合藥物釋放骨膜可以有效地用於長骨分節性骨折並骨膜剝離損傷的治療。
The management of comminuted long bone fractures brings several challenges to orthopedic surgeons because these injuries are always associated with bone comminution and periosteum stripping injuries which would induce unpredictable sequela like infection or bony nonunion. The periosteum is a membrane that covers the outer surface of the long bone. As a consequence of its high level of vascularization and the presence of osteogenic progenitor cells, osteoinductive growth factors, and an osteoconductive structure, the periosteum comprises a critical component of the bone-healing process. Unfortunately, few publications address the management of periosteum during the treatment of segmental fractures with periosteal stripping injuries.
The purpose of this study was to identify the biodegradable polycaprolactone stent playing as a periosteum during treating the segmental bony fracture. We set up a segmental long bone fracture model on the left femoral shaft of rabbits treating by an intramedullary Kirscher-wire fixation. Using this rabbit fracture model, we compared the bone healing conditions between those with and without stents coverage. The biodegradable poly([d,l]-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with lidocaine , vancomycin, and ceftazidime was also developed as an component of the artificial periosteum in the treatment of these segmental femoral fractures. We hypothesized that an ideal biomimetic periosteum would provide delivery of osteoinductive growth factors, restore angiogenic potential, and inhibit microbial infection on the bone surface, to allow better bone union.
The nanofibrous membrane’s drug release behavior was assessed in vitro using high-performance liquid chromatography and the disk-diffusion method. The clinical outcomes included radiographs obtained at 2, 6, and 12 weeks postoperatively to assess the bone unions. The total activity counts in animal behavior cages were also examined to evaluate the clinical performance of the rabbits. After the animals were euthanized, both femoral shafts were harvested and assessed for their torque strengths and toughness.
The results showed that those rabbits with stents coverage achieved a better bridging callus formation, better torque strength, and better toughness recovery than those without stents in 1.5-and 3-month following-ups. The daily in vitro release curve for lidocaine showed that the nanofibers eluted effective levels of lidocaine for longer than 3 weeks. The bioactivity studies of vancomycin and ceftazidime showed that both antibiotics had effective and sustained bactericidal capacities for over 30 days. The findings from the in vivo animal activity study suggested that the rabbits with the artificial drug-eluting periosteum exhibited statistically increased levels of activity and better clinical performance outcomes compared with the rabbits without the artificial periosteum.
In conclusion, this artificial drug-eluting periosteum may eventually be effectively used for the treatment of the long bone fractures with periosteal stripping injuries.
指導教授推薦書
口試委員審定書
致謝............................................................iii
中文摘要..........................................................v
Abstract.......................................................vii
Table of Contents...............................................ix
Legends of photographs..........................................xi
Legends of Tables...............................................xv
Chapter 1 Background.............................................1
1.1 Study background.........................................1
1.2 Introduction of periosteum...............................3
1.3 Introduction of polycaprolactone.............................7
1.4 Introduction of PLGA [Poly (lactic-co-glycolic acid)].......10
1.5 Introduction of clinical medicine...........................12
1.5.1 Lidocaine..............................................12
1.5.2 Vancomycin.............................................14
1.5.3 Ceftazidime............................................16
1.6 Study hypothesis and target.................................18
Chapter 2 Materials and Methods.................................19
2.1 Experimental flow chart.....................................19
2.2 Manufacture of biodegradable Polymers.......................20
2.2.1 Fabrication of biodegradable PCL stents................20
2.2.2 Preparation of drug-eluting nanofibrous membrane.......26
2.2.3 Scanning electron microscopy (SEM) of the nanofibers...30
2.3. In vitro drugs releasing study.............................31
2.3.1. HPLC assessment of Lidocaine release..................31
2.3.2. Bioactivity test of the antibiotics...................33
2.4 In vivo Animal Study........................................35
2.4.1. Surgical procedure....................................35
2.4.2. Postoperative animal care and activity assessment.....40
2.4.3. Animal euthanasia and mechanical strength test........44
2.5 Statistical analysis........................................47
Chapter 3 Results...............................................48
3.1 The results of in vitro studies.............................48
3.1.1 The results of the SEM micrographs.....................48
3.1.2 In vitro release characteristic of lidocaine...........49
3.1.3 In vitro release of antibiotics........................51
3.2 The results of in vivo animal studies.......................55
3.2.1 Body weight variation..................................55
3.2.3 The animal activity study..............................59
3.2.4 In vivo radiographic results of bone healing...........61
3.2.5 In vivo mechanical strength............................63
Chapter 4 Discussion and conclusions............................64
4.1 Discussion..................................................64
4.2 Conclusions.................................................68
4.3 Future works................................................69
Acknowledgements................................................70
References......................................................71
Appendix........................................................81
CURRICULUM VITAE................................................81
Publications....................................................83

Legends of photographs
[Figure 1] Staged operations for open fractures with periosteal stripping injury.................................................2
[Figure 2] Structure of periosteum...............................4
[Figure 3] A set of diagrams illustrating the high vascularization of the periosteum................................................5
[Figure 4] Publications using PCL in the field of Biomaterials or Tissue Engineering during the last 20 years......................7
[Figure 5] Structures made from PCL..............................8
[Figure 6] The degradation of PCL via hydrolysis intermediates 6-hydroxyl caproic acid and acetyl coenzyme A, which are then eliminated from the body via the citric acid cycle (a). Schematic visualization of how crystalline fragmentation could have taken place(b). Accelerated degradation of PCL over 5 weeks in NaOH (c) .................................................................9
[Figure 7] Structure of poly (lactic-co-glycolic acid)..........11
[Figure 8] 2D and 3D structure Ball-and-stick model of the lidocaine molecule, as found in the crystalline state...........13
[Figure 9] Chemical structure and Stick model of the vancomycin molecule, C66H75Cl2N9OO24, as found in the crystal structure of vancomycin acetate dichloride hydrate...........................15
[Figure 10] Skeletal formula and ball-and-stick model of сeftazidi
memolecule......................................................17
[Figure 11] Commercial products of PCL (Sigma-Aldrich, USA).....21
[Figure 12] Engineering draw of the stent scaffold model........22
[Figure 13] Lab-made micro-injection molding machine............22
[Figure 14] 3D-stereogram of the mold box drawing by Pro/Engineer 5.0 and final metal mold box with both cope and drag components.23
[Figure 15] A set of diagrams illustrating the steps of interconnection procedure to transform the stent element into stent mesh......................................................24
Figure 16] (A) Stent element design(B) Each stent element, interconnected with another stent element(C) Final assembled biodegradable stent(D)The end-product-a polycaprolactone stent..25
[Figure 17] poly[(d,l)-lactide-co-glycolide] (PLGA).............26
[Figure 18] Lidocaine hydrochloride [Sigma-Aldrich (St Louis, MO, USA)]...........................................................26
[Figure 19] Syringe pump and needle.............................28
[Figure 20] High voltage power supply machine...................28
[Figure 21] The collection plate................................29
[Figure 22] The electrospinning apparatus for nanofibers production......................................................29
[Figure 23] The nanofibrous membrane produced by the electrospinning procedure.......................................30
[Figure 24] The connection diagram of the HPLC analysis system..31
[Figure 25] The diagram of the steps of the antimicrobial susceptibility test.............................................34
[Figure 26] Diagram of the inhibition zones measurement in the antimicrobial susceptibility testing............................34
[Figure 27] The rabbit was induced of general anesthesia in a lab-made anesthesia chamber.........................................35
[Figure 28] The inhalation anesthesia system of Isoflurane vaporizer.......................................................36
[Figure 29] The surgical procedures in group A..................37
[Figure 30] The surgical procedures in group B..................38
[Figure 31] The surgical procedures in group C..................39
[Figure 32] A diffuse reflecting sensor HP100-A1 (Glotec, Taiwan.) and a diagram of all 9 sensors in three bars separated the cage into 9 symmetrical areas........................................41
[Figure 33] The photograph of the lab-made Animal Behavior Cage (ABC) built up with barbed iron wire to form a 1.2 m X 1.2 m squared network base and four 1.2m X 0.7 m network sidewalls....41
[Figure 34] A photograph of an individual unrestricted cage with standard rabbit chow and sterilized drinking water ad libitum for further postoperative care......................................42
[Figure 35] A photograph of a rabbit arranged for the X-ray radiographic assessment of the left thigh.......................43
[Figure 36] A photograph of the mechanical strength machine.....44
[Figure 37] a diagram and a photograph of a femoral specimen was eradicated residual muscles and removed the intramedullary K-wire ................................................................45
[Figure 38] A diagram and a photograph illustrating the procedure of the rotational torque and toughness assessment...............46
[Figure 39] SEM micrographs of the drug-eluting PLGA nanofibers under 20,000 magni¬fication.....................................48
[Figure 40] In vitro daily release and accumulated characteristic of lidocaine....................................................50
[Figure 41] In vitro release characteristic of vancomycin.......52
[Figure 42] In vitro release characteristic of ceftazidime......53
[Figure 43] Bioactivity of the eluted antibiotics...............54
[Figure 44] Body weight variations at various postoperative days ................................................................56
[Figure 45] Food intake at different post-operative days........58
[Figure 46] Water consumption at different post-operative days..58
[Figure 47] The photoelectric switch sensors of the animal behavior cage were 4484±366, and 6856 ±716 counts for groups A and B respectively..................................................60
[Figure 48] The total activity counts of rabbits in the ABC for one week........................................................60
[Figure 49] The comparison of radiographic results between two groups..........................................................62

Legends of Tables
[Table 1] Parameters of polycaprolactone (PCL)..................20
[Table 2] the major component of HPLC...........................32
References
1. R.B. Gustilo, R.M. Mendoza and D.N. Williams. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures, J. Trauma 1984;24: 742–746.
2. Malhotra AK, Goldberg S, Graham J, Malhotra NR, Willis MC, Mounasamy V, Guilford K, Duane TM, Aboutanos MB, Mayglothling J, Ivatury RR. Open extremity fractures: impact of delay in operative debridement and irrigation. J Trauma Acute Care Surg. 2014;76(5):1201-7.
3. Gopal S, Majumder S, Batchelor AGB, Knight SL et al.Fix and flap: The radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Joint Surg [Br] 2000; 82:959-66.
4. Harley BJ, Beaupre LA, Jones CA, Dulai SK, Weber DW. The effect of time to definitive treatment on the rate of nonunion and infection in open fractures. J Orthop trauma 2002;16: 484-90.
5. Demirtas Y, Kelahmetoglu O, Cifci M, Tayfur V, Demir A, Guneren E: Comparison of free anterolateral thigh flaps and free muscle-musculocutaneous flaps in soft tissue reconstruction of lower extremity. Microsurgery 2010;30(1):24-31.
6. Tielinen L, Lindahl JE, Tukiainen EJ: Acute undreamed intramedullary nailing and soft tissue reconstruction with muscle flaps for the treatment of severe open tibial shaft fractures. Injury 2007;38(8):906-912.
7. Hoffman MD, Xie C, Zhang X, Benoit DS. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials. 2013 Nov;34:8887-98.

8. Hah YS, Joo HH, Kang YH, Park BW, Hwang SC, Kim JW, Sung IY, Rho GJ, Woo DK, Byun JH. Cultured human periosteal-derived cells have inducible adipogenic activity and can also differentiate into osteoblasts in a perioxisome proliferator-activated receptor-mediated fashion. Int J Med Sci. 2014 Aug 16;11(11):1116-28.
9. van Gastel N, Stegen S, Stockmans I, Moermans K, Schrooten J, Graf D, Luyten FP, Carmeliet G. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells. 2014 Sep;32(9):2407-18.
10. Oktaş B, Orhan Z, Erbil B, Değirmenci E, Ustündağ N. Effect of extracorporeal shock wave therapy on fracture healing in rat femural fractures with intact and excised periosteum. Eklem Hastalik Cerrahisi. 2014;25(3):158-62.
11. Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audigé L. Fracture and dislocation classification compendium – 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 2007;21:S1–33.
12. Jansen H, Frey SP, Doht S, Fehske K, Meffert RH. Medium-term results after complex intra-articular fractures of the tibial plateau. J Orthop Sci 2013;18:569–577.
13. Ali S, Drendel AL, Kircher J, Beno S. Pain management of musculoskeletal injuries in children. Pediatr Emerg Care 2010;26:518-524.
14. Todd KH, Ducharme J, Choiniere M, Crandall CS, Fosnocht DE, Homel P, Tanabe P; PEMI Study Group. Pain in the emergency department: results of the pain and emergency medicine initiative (PEMI) multicenter study. Pain 2007;8:460-466.
15. Affas F, Nygards EB, Stiller CO, Wretenberg P, Olofsson C. Pain control after total knee arthroplasty: a randomized trial comparing local infiltration anesthesia and continuous femoral block. Acta Orthop 2011;82:441–447.
16. Ganapathy S. Wound/intra-articular infiltration or peripheral nerve blocks for orthopedic joint surgery: efficacy and safety issues. Curr Opin Anaesthesiol 2012;25:615–620.
17. Foley PL, Liang H, Crichlow AR. Evaluation of a sustained-release formulation of buprenorphine for analgesia in rats. J Am Assoc Lab Anim Sci 2011;50:198–204.
18. Kendall JM, Allen P, Younge P, Meek SM, McCabe SE. Haematoma block or Bier’s block for Colles’ fracture reduction in the Accident and Emergency Department‑which is best? J Accid Emerg Med 1997;14:352–356.
19. Ross A, Catanzariti AR, Mendicino RW. The hematoma block: A simple, effective technique for closed reduction of ankle fracture dislocations. J Foot Ankle Surg 2011;50:507–509.
20. Siddiqui ZI, Cepeda MS, Denman W, Schumann R, Carr DB. Continuous lumbar plexus block provides improved analgesia with fewer side effects compared with systemic opioids after hip arthroplasty: a randomized controlled trial. Reg Anesth Pain Med. 2007;32:393–398.
21. Bergström J, Ahmed M, Li J, Ahmad T, Kreicbergs A, Spetea M. Opioid peptides and receptors in joint tissues: Study in the rat. J Orthop Res 2006;24:1193–1199.
22. Gajda M, Litwin JA, Cichocki T, Timmermans JP, Adriaensen D. Development of sensory innervation in rat tibia: co-localization of CGRP and substance P with growth-associated protein 43 (GAP-43). J Anat 2005;207:135–144.
23. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O'Leary P, Mantyh PW. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 2002; 113:155-166.
24. Mellar PD. Fentanyl for breakthrough pain: a systematic review. Expert Rev Neurother 2011;11:1197–1216.
25. Maria Ann Woodruff, Dietmar Werner Hutmacher. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science 2010;35: 1217–1256.
26. Liu X, Hasan MS, Grant DM, Harper LT, Parsons AJ, Palmer G, Rudd CD, Ahmed I. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites. J Biomater Appl. 2014 Nov;29(5):675-87.
27. Lee H, Kim G.Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications.J Colloid Interface Sci. 2014 Sep 15;430:315-25.
28. Luciani A, Coccoli V, Orsi S,Ambrosio L, Netti PA. PCL microspheres based functional scaffolds by bottom-up approach with prede- fined microstructural properties and release profiles. Biomaterials 2008;29:4800–7.
29. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured poly(epsilon-caprolactone) nonwoven mats via electrospinning. Polymer 2003;44:1287–94.

30. Huang H, Oizumi S, Kojima N, Niino T, Sakai Y. Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials 2007;28:3815–23.
31. Zein I, Hutmacher DW, Tan KC, TeohSH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23:1169–85
32. Marrazzo C, Di Maio E, Iannace S. Conventional and nanometric nucleating agents in poly(epsilon-caprolactone) foaming: crystals vs. bubbles nucleation. Polym Eng Sci 2008;48:336–44.
33. Van Lieshout MI. Tissue engineered aortic valves based on a knit- ted scaffold. PhD dissertation. Eindhoven: Technische Universiteit Eindhoven; 2005. p. 1–93.
34. Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009 Dec;38(12):3484-504.
35. Tapan K. Dash, V. Badireenath Konkimalla. Poly-є-caprolactone based formulations for drug delivery and tissue engineering:A review. Journal of Controlled Release 2012;158:15–33.
36. Hu JZ, Zhou YC, Huang LH, Lu HB. Development of biodegradable polycaprolactone film as an internal fixation material to enhance tendon repair: an in vitro study. BMC Musculoskelet Disord. 2013 Aug 19;14:246.
37. Pfeiffer D, Stefanitsch C, Wankhammer K, Müller M, Dreyer L, Krolitzki B, Zernetsch H, Glasmacher B, Lindner C, Lass A, Schwarz M, Muckenauer W, Lang I. Endothelialization of electrospun polycaprolactone (PCL) small caliber vascular grafts spun from different polymer blends. J Biomed Mater Res A. 2014 Dec;102(12):4500-9.
38. Chao YK, Liu KS, Wang YC, Huang YL, Liu SJ. Biodegradable cisplatin-eluting tracheal stent for malignant airway obstruction: in vivo and in vitro studies. Chest. 2013 Jul;144(1):193-9.
39. Thadavirul N, Pavasant P, Supaphol P.Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.J Biomater Sci Polym Ed. 2014;25(17):1986-2008.
40. Lam CXF, Savalani MM, Teoh SH, Hutmacher DW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 2008;3:1–15.
41. Fournier E, Passirani C, Montero-Menei CN, Benoit JP. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials 24, 2003;3311–3331.
42. Chen DWC, Liao JY, Liu SJ, Chan EC. Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study. Int. J. Nanomedicine 2012;7:763–771.
43. Tseng YY, Liao JY, Chen WA, Kao YC, Liu SJ. Biodegradable poly([d,l]-lactide-co-glycolide) nanofibers for the sustainable delivery of lidocaine into the epidural space after laminectomy. Nanomedicine. 2014;9(1):77-87.
44. Tseng YY, Kao YC, Liao JY, Chen WA, Liu SJ. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: in vitro and in vivo studies. ACS Chem Neurosci. 2013;18;4(9):1314-21.
45. Hsu YH, Chen DW, Tai CD, Chou YC, Liu SJ, Ueng SW, Chan EC. Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies. Int J Nanomedicine. 2014;Sep 12;9:4347-55.
46. Donegan DJ, Scolaro J, Matuszewski PE, Mehta S. Staged bone grafting following placement of an antibiotic spacer block for the management of segmental long bone defects. Orthopedics 2011;34(11):e730-e735.
47. Ferguson JY, Dudareva M, Riley ND, Stubbs D, Atkins BL, McNally MA. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Joint J. 2014;96-B(6):829-36.
48. Singh G, Pai RS. Pharmacokinetics and in vivo biodistribution of optimized PLGA nanoparticulate drug delivery system for controlled release of emtricitabine. Drug Deliv. 2014 Dec;21(8):627-35.
49. Pharmaceutical Innovation: Revolutionizing Human Health. Philadelphia: Chemical Heritage Press. p. 211.
50. World Health Organization. April 2015. Archived (PDF) from the original on 13 December 2016. Retrieved 8 December 2016.
51. Cambridge Textbook of Accident and Emergency Medicine. Project co-ordinator, Fiona Whinster. Cambridge, UK: Cambridge University Press. p. 194
52. The American Society of Health-System Pharmacists. Archived from the original on 2015-09-06. Retrieved Aug 26, 2015.
53. Picard J, Ward SC, Zumpe R, Meek T, Barlow J, Harrop-Griffiths W Guidelines and the adoption of 'lipid rescue' therapy for local anaesthetic toxicity. 2009 Anaesthesia. 64 (2): 122–5.

54. Oxford Handbook of Infectious Diseases and Microbiology. OUP Oxford. 2009. p. 56.

55. Liu, C; Bayer, A; Cosgrove, SE; Daum, RS; Fridkin, SK; Gorwitz, RJ; Kaplan, SL; Karchmer, AW; Levine, DP; Murray, BE; J Rybak, M; Talan, DA; Chambers, HF (1 February 2011). "Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary". Clinical Infectious Diseases. 52 (3): 285–92.

56. Knox, JR; Pratt, RF. "Different modes of vancomycin and D-alanyl-D-alanine peptidase binding to cell wall peptide and a possible role for the vancomycin resistance protein". Antimicrob. Agents Chemother.1990, 34 (7): 1342–1347.
57. The American Society of Health-System Pharmacists. Archived from the original on 20 December 2016. Retrieved 8 December 2016.
58. Fischer, Janos; Ganellin, C. Robin (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 495.
59. Hamilton, Richart (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 87.
60. White, N. J.; Dance, D. A.; Chaowagul, W; Wattanagoon, Y; Wuthiekanun, V; Pitakwatchara, N. "Halving of mortality of severe melioidosis by ceftazidime".1989, Lancet. 2 (8665): 697–701.
61. S.J. Liu, F.J. Chiang, C.Y. Hsiao, Y.C. Kau, K.S. Liu. Fabrication of Balloon-expandable Self-lock Drug-eluting Polycaprolactone Stents Using Micro-injection Molding and Spray Coating Techniques. Annals of Biomedical Engineering 2010; 38: 3185-3194.

62. Crandon JL, MacVane SH, Nicolau DP. Clinical laboratory-based assay methodologies may underestimate and increase variability of vancomycin protein binding in hospitalized patients. Pharmacotherapy. 2014 Feb;34(2):203-9.
63. Mooney JF. The use of 'damage control orthopedics' techniques in children with segmental open femur fractures. J Pediatr Orthop B. 2012;21(5):400-3.
64. Ichikawa Y, Watahiki J, Nampo T, Nose K, Yamamoto G, Irie T, Mishima K, Maki K. Differences in the developmental origins of the periosteum may influence bone healing. J Periodontal Res. 2015;50(4):468-478.
65. Kendall JM, Allen P, Younge P, Meek SM, McCabe SE. Haematoma block or Bier’s block for Colles’ fracture reduction in the Accident and Emergency Department‑which is best? J Accid Emerg Med 1997;14:352–356.
66. Ganapathy S. Wound/intra-articular infiltration or peripheral nerve blocks for orthopedic joint surgery: efficacy and safety issues. Curr Opin Anaesthesiol 2012;25:615–620.
67. Kosta V, Kojundzic SL, Sapunar LC, Sapunar D. The extent of laminectomy affects pain-related behavior in a rat model of neuropathic pain. Eur J Pain 2009;13:243–248.
68. Liu SJ, Chiang FJ, Hsiao CY, Kau YC, Liu KS. Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques. Ann Biomed Eng 2010;38:3185–3194.
69. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O'Leary P, Mantyh PW. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 2002; 113:155-166.
70. Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audigé L. Fracture and dislocation classification compendium – 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 2007;21:S1–33.
71. Shaik NA, Raol SS, Chiruvella S, Rao MS, Reddy SV. Effectiveness of butorphanol as an adjuvant to lidocaine for haematoma or periosteal block: A prospective, randomised, double blind study. Indian J Anaesth 2013;57:150-155.
72. Siddiqui ZI, Cepeda MS, Denman W, Schumann R, Carr DB. Continuous lumbar plexus block provides improved analgesia with fewer side effects compared with systemic opioids after hip arthroplasty: a randomized controlled trial. Reg Anesth Pain Med. 2007;32:393–398. 
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top