跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉慶
研究生(外文):Chen, Chia-Ching
論文名稱:雙頻與壓抑後波瓣之高增益行波天線設計
論文名稱(外文):Design of Traveling-Wave Antennas for Dual-Band Operations, Gain Enhancement and Back-Lobe Suppression
指導教授:周復芳
指導教授(外文):Dr. Christina F. Jou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:56
中文關鍵詞:行波天線洩漏波天線單導體
外文關鍵詞:Traveling-Wave AntennaLeaky-Wave AntennaSingle Conductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將提出兩種行波天線設計,第一種設計是雙頻可回授式之半模基板合成波導洩漏波天線,其操作頻率為5.2 和5.8 GHz。傳統的洩漏波天線,通常會在天線的尾端接上一個負載,讓殘餘未輻射的能量不會反射,減少反射波,以壓低後波瓣。並且傳統的洩漏波天線,天線長度必須要到一定的長度,才能讓能量有效的利用,所以天線的面很大。而回授式之半模基板合成波導洩漏波天線,可以藉由回授網路,讓殘餘未輻射的能量再回到天線,可以增加增益。而天線的長度也可以變得比較短,不但有效率地使用能量,也相對的減少使用面積。第二種設計是單一導體行波天線的改良設計,此天線容易實現高增益以及寬頻的特性。由於單一導體帶第一高階模的行波天線的基本物理特性為完美電牆(perfect electric wall)中心對稱,縱向電流為奇對稱分布,而橫向電流為偶對稱分布,所以藉由平衡轉非平衡轉換器饋入激發,使單一導體帶第一高階模之行波天線具備寬頻以及高增益的特性。並且單一導體帶第一高階模之行波天線的正規化相位常數β/k0 在其頻寬內都相當接近1,所以場型幾乎為水平方向(end-fire)的輻射場型,但其場型會有後波瓣而可能會對後端電路造成輻射干擾,所以利用調整天線寬度的方法,以壓低後波瓣,讓天線場型有顯著的改善,不會對後端電路產生干擾。
In this thesis, a dual-band half-mode substrate integrated waveguide(HMSIW) traveling-wave antenna(TWA) with feedback network and a single-conductor tapered strip traveling- wave antenna are proposed. The classical TWAs are always terminated at the end of antenna. Because the remaining power reflected from the end of TWA may excite back lobe to spoil the radiation pattern. Otherwise, its longitudinal length requires 5~10λ to radiate efficiently, and it will occupy too much space to fabricate in low price. In our first design, using feedback network of HMSIW TWA allows the remaining power which is non-radiating to re-radiate, it can not only enhance the gain of TWA but also suppress back lobe level. The length of HMSIW TWA with feedback network requires only 1~2λ, which is shorter than the classical TWAs, it would also reduce the area.
In our second design, the improvement of single-conductor strip TWA is easy to achieve high gain and broadband performance. For the first higher mode in this structure, a virtual perfect electric wall is assumed at the center of the strip, which means that the longitudinal currents are odd-symmetric and the transverse currents are even-symmetric with respect to the center. A wide-band microstrip balun to feed this structure is needed to excite the first higher leaky mode. The normalized phase constant is very close to one in the space-wave leaky region. We observed that the main beam of this antenna is almost fixed at the end-fire direction in the operation band. From the radiation pattern of this structure, we find that the back lobe is very large, its radiation may interfere the circuits which are behind the antenna. So we taper the width of the single-conductor strip TWA to suppress back lobe level. After tapering the width of antenna, we can observe the improvement on the back lobe level.

中文摘要 iii
Abstract iv
誌謝 vi
Contents vii
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of This Thesis 2
Chapter 2 Theories of Half-Mode Microstrip Traveling-Wave Antenna 3
2.1 Classical Implementation of Traveling-Wave Antennas 3
2.2 Characterizations of Leaky-wave Antennas 4
2.3 Radiation Pattern of Leaky-wave Antennas 4
2.4 Dispersion Characteristics of Leaky-wave Antennas 5
2.5 Half-width Microstrip Leaky-wave Antennas 7
2.6 Single-conductor Strip Antenna 8
Chapter 3 Design of Dual-Band Half-Mode Substrate Integrated Waveguide Traveling-Wave Antenna with Feedback Network 9
3.1 Extraction of the Complex Propagation Constant 9
3.2 Feedback Network 11
3.3 Simulation and Measurement 14
Chapter 4 Design of Single-Conductor Tapered Strip Traveling-Wave Antenna 30
4.1 Extraction of the Complex Propagation Constant 31
4.2 Broadband Feeding Structure 32
4.3 Performance of the Single-conductor Strip Traveling-wave Antenna 37
Chapter 5 Conclusions and Recommendations 52
5.1 Conclusions 52
5.2 Recommendations 53
Reference 54

[1] W. Menzel, "A new travelling wave antenna in microstrip," in Microw. Conf., 1978. 8th European, 1978, pp. 302-306.
[2] A. A. Oliner, "Leakage from higher modes on microstrip line with application to antennas," Radio Sci., vol. 22, pp. 907-912, 1987.
[3] Q. Lai, C. Fumeaux, W. Hong, and R. Vahldieck, "Characterization of the propagation properties of the half-mode substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., vol. 57, pp. 1996-2004, 2009.
[4] H. Nam, T.-S. Yun, K.-B. Kim, K.-C. Yoon, and J.-C. Lee, "Ku-band transition between microstrip and substrate integrated waveguide (SIW)," in Microw. Conf. Proc., 2005. APMC 2005. Asia-Pacific Conference Proceedings, 2005, p. 4 pp.
[5] F. Xu and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., vol. 53, pp. 66-73, 2005.
[6] K. S. Lee, "Microstrip Line Leaky Wave Antenna," Ph.D Dissertation, Polytechnic University, New York, 1986.
[7] G. Zelinski, G. Thiele, M. Hastriter, M. Havrilla, and A. Terzuoli, "Half width leaky wave antennas," IET Microwaves, Antennas &; Propagation, vol. 1, pp. 341-348, 2007.
[8] J. Xu, W. Hong, H. Tang, Z. Kuai, and K. Wu, "Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications," IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 85-88, 2008.
[9] D. R. Jackson and A. A. Oliner, Leaky-Wave Antennas in Modern Antenna Handbook, first ed. Canada: John Wiley &; Sons, Inc, 2007.
[10] W. Hong and Y.-D. Lin, "Single-conductor strip leaky-wave antenna," IEEE Trans. Antennas Propag., vol. 52, pp. 1783-1789, 2004.
[11] Z.-Y. Zhang, Y.-X. Guo, L. C. Ong, and M. Chia, "A new wide-band planar balun on a single-layer PCB," IEEE Trans. Microw. and Wireless Compon.Lett., vol. 15, pp. 416-418, 2005.
[12] J. McDonough, R. Malech, and J. Kowalsky, "Recent developments in the study of printed antennas," in IRE International Convention Record, 1957, pp. 173-176.
[13] J.-W. Sheen, W. Hong, and Y.-D. Lin, "Wide band tapered microstrip leaky-wave antenna," in Microw. Conf., 2000. 30th European, 2000, pp. 1-4.
[14] Y.-D. Lin and J.-W. Sheen, "Mode distinction and radiation-efficiency analysis of planar leaky-wave line source," IEEE Trans. Microw. Theory Tech., vol. 45, pp. 1672-1680, 1997.
[15] Y.-D. Lin, J.-W. Sheen, and C.-K. Tzuang, "Analysis and design of feeding structures for microstrip leaky wave antenna," in Microw. Symp. Dig., 1995., IEEE MTT-S International, 1995, pp. 149-152.
[16] J.-H. Lu, "TECHNIQUES FOR SIDE LOBE SUPPRESION AND GAIN ENHANCEMENT OF A HALF MODE SUBSTRATE INTEGRATE WAVEGUIDE LEAKY WAVE ANTENNA," Master, Computer and Information Science College of Electrical Engineering and Computer Science, National Chiao Tung University, Hsinchu, Taiwan, 2011.
[17] W. Hong, T.-L. Chen, C.-Y. Chang, J.-W. Sheen, and Y.-D. Lin, "Broadband tapered microstrip leaky-wave antenna," IEEE Trans. Antennas Propag., vol. 51, pp. 1922-1928, 2003.
[18] Y. Miyama, K. Wakino, Y.-D. Lin, and T. Kitazawa, "Broadband leaky-wave antenna fed with composite right/left-handed transmission line," IEEE Trans. Antennas Propag., vol. 56, pp. 3585-3589, 2008.
[19] T.-L. Chen and Y.-D. Lin, "Aperture-coupled microstrip line leaky wave antenna with broadside mainbeam," Electron. Lett., vol. 34, pp. 1366-1367, 1998.
[20] T.-L. Chen and Y.-D. Lin, "Microstrip leaky-wave antenna fed by short-end CPW-to-slot transition," Electron. Lett., vol. 35, pp. 100-101, 1999.
[21] N.-A. Kao, C.-C. Hu, J.-J. Wu, and C. Jou, "Active aperture-coupled leaky-wave antenna," Electron. Lett., vol. 34, pp. 2183-2184, 1998.
[22] C.-C. Wu, H.-C. Lin, Y.-D. Lin, and T. Kitazawa, "Composite sector-beam single-conductor leaky-wave antenna for base-station applications," in Microw. Conf. Proc. (APMC), 2012 Asia-Pacific, 2012, pp. 803-805.
[23] W. Hong and Y.-D. Lin, "Antipodal strip broadband leaky-wave antenna," in Antennas Propag. Soc. Int. Symp., 2003. IEEE, 2003, pp. 1142-1145.
[24] D. M. Pozar, Microwave Engineering: JOHN WILEY, 2005.
[25] K. Wu and L. Li, "Numerical calibration and de-embedding techniques for CAD and equivalent circuit models of electromagnetic structures," Mikrotalasna revija, vol. 11, pp. 7-19, 2005.
[26] R. Sorrentino and M. Mongiardo, "Transverse Resonance Techniques," Encyclopedia of RF and Microwave Engineering, 1989.
[27] D. C. Chang and E. F. Kuester, "Total and partial reflection from the end of a parallel‐plate waveguide with an extended dielectric slab," Radio Sci., vol. 16, pp. 1-13, 1981.
[28] E. Kuester, R. Johnk, and D. Chang, "The thin-substrate approximation for reflection from the end of a slab-loaded parallel-plate waveguide with application to microstrip patch antennas," IEEE Trans. Antennas Propag., vol. 30, pp. 910-917, 1982.
[29] Y.-C. Shih, S.-K. Chen, C.-C. Hu, and C. Jou, "Active feedback microstrip leaky wave antenna-synthesiser design with suppressed back lobe radiation," Electron. Lett., vol. 35, pp. 513-514, 1999.
[30] H. V. Nguyen, A. Parsa, and C. Caloz, "Power-recycling feedback system for maximization of leaky-wave antennas' radiation efficiency," IEEE Trans. Microw. Theory Tech., vol. 58, pp. 1641-1650, 2010.
[31] M. Schuhler, R. Wansch, and M. A. Hein, "On strongly truncated leaky-wave antennas based on periodically loaded transmission lines," IEEE Trans. Antennas Propag., vol. 58, pp. 3505-3514, 2010.
[32] J.-W. Wu, C. F. Jou, and C.-J. Wang, "A compact wideband leaky-wave antenna with etched slot elements and tapered structure," IEEE Trans. Antennas Propag., vol. 58, pp. 2176-2183, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top