|
[1] G. Gautschi, “Piezoelectric Sensors.”Piezoelectric Sensorics, 73-91: Springer, 2002. [2] D. Damjanovic, and R. Newnham, “Electrostrictive and Piezoelectric Materials for Actuator Applications.” Journal of intelligent material systems and structures 3, no. 2 1992: 190-208. [3] J. Zheludev, and A. Fotchenkov, “Electrostriction of Linear Dielectrics.” Kristallografiya 3 1958: 308-14. [4] F. Jona, and G. Shirane, Ferroelectric Crystals, Vol. 1: Pergamon, 1962. [5] I. Zheludev, “Fundamentals of Ferroelectricity.” Moscow, Atomizdat, 1973. [6] V. Laude, “Photon and Acoustic Phonon Coupling in Phoxonic Crystals.” Photonic Crystal Materials and Devices X, 2012. [7] D. Royer, and E. Dieulesaint. Elastic Waves in Solids Ii: Generation, Acousto-Optic Interaction, Applications, Springer Science & Business Media, 1999. [8] J. Xu, and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications, Vol. 12: Wiley-Interscience, 1992. [9] D.F. Nelson, Electric, Optic, and Acoustic Interactions in Dielectrics, John Wiley & Sons, 1979. [10] R. Chiao, C. Townes, and B. Stoicheff, “Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves.” Physical Review Letters 12, no. 21 1964: 592. [11] V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J.M. Dudley, and H. Maillotte, “Phononic Band-Gap Guidance of Acoustic Modes in Photonic Crystal Fibers.” Physical Review B 71, no. 4 2005: 045107. [12] P. Dainese, P.S.J. Russell, N. Joly, J. Knight, G. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from Multi-Ghz-Guided Acoustic Phonons in Nanostructured Photonic Crystal Fibres.” Nature Physics 2, no. 6 2006: 388. [13] R.W. Boyd, Nonlinear Optics, Academic press, 2003. [14] I.L. Fabelinskii, Molecular Scattering of Light, Springer Science & Business Media, 2012. [15] E.L. Buckland, and R.W. Boyd, “Electrostrictive Contribution to the Intensity-Dependent Refractive Index of Optical Fibers.” Optics letters 21, no. 15 1996: 1117-19. [16] J.B. Khurgin, and R.S. Tucker, Slow Light: Science and Applications, CRC press, 2008. [17] R.R. Syms, and J.R. Cozens, Optical Guided Waves and Devices, McGraw-Hill, 1992. [18] E. Ippen, and R. Stolen, “Stimulated Brillouin Scattering in Optical Fibers.” Applied Physics Letters 21, no. 11 1972: 539-41. [19] V.I. Kovalev, and R.G. Harrison, “Threshold for Stimulated Brillouin Scattering in Optical Fiber.” Optics Express 15, no. 26 2007: 17625-30. [20] A. Agrawal, T.M. Benson, M. Richard, D. La Rue, and G.A. Wurtz. Recent Trends in Computational Photonics, Vol. 204: Springer, 2017. [21] K. Shiraki, M. Ohashi, and M. Tateda, “Sbs Threshold of a Fiber with a Brillouin Frequency Shift Distribution.” Journal of Lightwave Technology 14, no. 1 1996: 50-57. [22] K.S. Abedin, “Observation of Strong Stimulated Brillouin Scattering in Single-Mode as 2 Se 3 Chalcogenide Fiber.” Optics Express 13, no. 25 2005: 10266-71. [23] D. Cotter, “Observation of Stimulated Brillouin Scattering in Low-Loss Silica Fibre at 1.3 um.” Electronics Letters 18, no. 12 1982: 495-96. [24] E.K.M. El-Khamesy, “Performance Enhancement of an Optical Pulse Compression Unit Using Optical Fiber Nonlinearities.” Arab Academy for Science, 2008. [25] N. Uesugi, M. Ikeda, and Y. Sasaki, “Maximum Single Frequency Input Power in a Long Optical Fibre Determined by Stimulated Brillouin Scattering.” Electronics Letters 17, no. 11 1981: 379-80. [26] D.J. Griffiths, Introduction to Electrodynamics, Prentice Hall, 1962.
|