跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高若綺
研究生(外文):Jo-Chi Kao
論文名稱:抗寄生蟲藥物氯硝柳胺抗登革病毒感染的分子機制
論文名稱(外文):Molecular Mechanism of Antiparasitic Niclosamide against Dengue Virus Infection
指導教授:林秋烽
指導教授(外文):Chiou-Feng Lin
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:64
中文關鍵詞:登革病毒氯硝柳胺內吞小體酸化作用哺乳動物雷帕黴素靶蛋白複製
外文關鍵詞:Dengue virusNiclosamideEndosomal acidificationmTORReplication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
抗寄生蟲藥物氯硝柳胺被證實能抑制由蚊蟲媒介茲卡病毒的感染。本研究中,我們利用體外細胞及體內動物模式探討氯硝柳胺對抗登革病毒感染的效果。氯硝柳胺可有效地阻擋登革病毒感染人類肺腺癌細胞 (A549)、小鼠神經母細胞瘤細胞 (Neuro-2a) 以及幼倉鼠腎臟纖維母細胞 (BHK-21)。初步結果顯示氯硝柳胺不影響病毒感染進入細胞、宿主細胞因應感染生成第一型干擾素反應以及不直接影響病毒轉錄體的轉譯作用。氯硝柳胺已知可抑制mTOR、STAT3以及NF-κB訊息路徑,但利用各自的選擇性抑制劑卻無法降低登革病毒感染,故而推測氯硝柳胺應藉由其他方式抑制登革病毒感染。如同vacuolar ATPase的抑制劑巴佛洛霉素A1,氯硝柳胺以及其他的質子載體 (例如 CCCP以及FCCP) 皆能有效地抑制細胞內吞小體的酸化並減少病毒核糖核酸複製以達到降低登革病毒感染之作用。利用腦內合併腹腔注射登革病毒感染出生七天大的ICR-哺乳期小鼠,結果顯示單一劑量的氯硝柳胺能部份降低小鼠腦內的病毒量、病毒性腦炎以及小鼠死亡率。本研究結果證實氯硝柳胺透過阻擋細胞內吞小體的酸化作用進而降低登革病毒的感染。
Antiparasitic niclosamide has been demonstrated to inhibit the arthropod-borne Zika virus. Here we investigated the antiviral ability of niclosamide against dengue virus (DENV) serotype 2 infection in vitro and in vivo. Administration of niclosamide effectively retarded DENV-induced infection in vitro in human lung adenocarcinoma cells (A549), mouse neuroblastoma cells (Neuro-2a), and baby hamster kidney fibroblasts (BHK-21). Treatment of niclosamide did not retard the endocytosis of DENV or the antiviral type I interferon response. Furthermore, niclosamide did not cause a direct effect on viral replicon-based expression. Niclosamide has been reported to competitively inhibit the mTOR (mammalian target of rapamycin), STAT3 (signal transducer and activator of transcription 3), and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling pathways; however, selective inhibitors of those pathways did not reduce DENV infection. Similar to the vacuolar-type H+-ATPase inhibitor bafilomycin A1, both niclosamide and other protonophores such as CCCP (carbonyl cyanide m-chlorophenyl hydrazone), and FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone) effectively reduced endosomal acidification and viral dsRNA replication. Co-administration of single dose of niclosamide partly decreased viral replication, viral encephalitis, and mortality in DENV-infected ICR suckling mice. These results demonstrate that niclosamide diminishes DENV infection by hindering endosomal acidification.
Abstract in English 1
Abstract in Chinese 2
Acknowledgement 3
Abbreviations 5
Content 8
I. Introduction 10
I-1. Epidemiology of dengue virus (DENV) 10
I-2. Characteristics of DENV 10
I-3. Life cycle of DENV 14
I-4. Clinical symptoms of DENV infection 15
I-5. Anti-DENV drugs 15
I-6. Niclosamide as a potent anti-DENV drug 17
II. Objectives and Specific Aims 19
III. Materials and Methods 20
III-1. Cells, virus strains, antibodies and reagents 20
III-2. Animals 21
III-3. DENV infection 21
III-4. Plaque assay 21
III-5. Cytotoxicity 21
III-6. Western blotting 22
III-7. Reporter assay 22
III-8. Fluorescent DENV 22
III-9. Immunostaining 23
III-10. ELISA 23
III-11. Acridine orange staining 23
III-12. Statistical analysis 23
IV. Results 24
IV-1. Niclosamide treatment decreases DENV infection in vitro 24
IV-2. Niclosamide inhibits DENV infection at early stage 24
IV-3. Blocking DENV infection by niclosamide does not affect the endocytosis of DENV 24
IV-4. Anti-DENV effect caused by niclosamide is independent of type I IFN response 25
IV-5. No effects on viral genome replication in niclosamide-treated DENV replicon cells 25
IV-6. Niclosamide initiated antiviral effects independent of inhibiting the mTOR, STAT3, and NK-kB signaling pathways 26
IV-7. Similar to other protonophores, niclosamide causes endosomal deacidification to suppress dsRNA replication and virus release 26
IV-8. Niclosamide treatment abolishes DENV infection in vivo and DENV-induced acute viral encephalitis-like disease progression 27
V. Discussion 29
VI. Conclusion 33
References 34
Appendix 53
A. Materials 53
A-1 Chemicals 53
A-2 Antibodies 55
A-3 Kits 56
A-4 Consumables 56
B. Methods 57
B-1 Cell culture 57
B-2 Western blot 59
B-3 Virus quantification 62
Alam, A., Imam, N., Farooqui, A., Ali, S., Malik, M.Z., and Ishrat, R. (2017). Recent trends in ZikV research: A step away from cure. Biomed Pharmacother 91, 1152-1159.
Alcon, S., Talarmin, A., Debruyne, M., Falconar, A., Deubel, V., and Flamand, M. (2002). Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the experiencing primary acute phase of disease in patients or secondary infections. J Clin Microbiol 40, 376-381.
Apte-Sengupta, S., Sirohi, D., and Kuhn, R.J. (2014). Coupling of replication and assembly in flaviviruses. Curr Opin Virol 9, 134-142.
Balinsky, C.A., Schmeisser, H., Ganesan, S., Singh, K., Pierson, T.C., and Zoon, K.C. (2013). Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol 87, 13094-13106.
Benarroch, D., Selisko, B., Locatelli, G.A., Maga, G., Romette, J.L., and Canard, B. (2004). The RNA helicase, nucleotide 5''-triphosphatase, and RNA 5''-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208-218.
Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., et al. (2013). The global distribution and burden of dengue. Nature 496, 504-507.
Bollati, M., Alvarez, K., Assenberg, R., Baronti, C., Canard, B., Cook, S., Coutard, B., Decroly, E., de Lamballerie, X., Gould, E.A., et al. (2010). Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 87, 125-148.
Byk, L.A., and Gamarnik, A.V. (2016). Properties and Functions of the Dengue Virus Capsid Protein. Annu Rev Virol 3, 263-281.
Castillo Ramirez, J.A., and Urcuqui-Inchima, S. (2015). Dengue Virus Control of Type I IFN Responses: A History of Manipulation and Control. J Interferon Cytokine Res 35, 421-430.
Chang, C.J., Luh, H.W., Wang, S.H., Lin, H.J., Lee, S.C., and Hu, S.T. (2001). The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol 20, 569-577.
Che, P., Tang, H., and Li, Q. (2013). The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology 446, 303-313.
Chen, W., Mook, R.A., Jr., Premont, R.T., and Wang, J. (2018). Niclosamide: Beyond an antihelminthic drug. Cell Signal 41, 89-96.
Chua, J.J., Ng, M.M., and Chow, V.T. (2004). The non-structural 3 (NS3) protein of dengue virus type 2 interacts with human nuclear receptor binding protein and is associated with alterations in membrane structure. Virus Res 102, 151-163.
Colpitts, T.M., Barthel, S., Wang, P., and Fikrig, E. (2011). Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS One 6, e24365.
Cruz-Oliveira, C., Freire, J.M., Conceicao, T.M., Higa, L.M., Castanho, M.A., and Da Poian, A.T. (2015). Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev 39, 155-170.
Diehl, N., and Schaal, H. (2013). Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 5, 3192-3212.
Duan, X., Lu, X., Li, J., and Liu, Y. (2008). Novel binding between pre-membrane protein and vacuolar ATPase is required for efficient dengue virus secretion. Biochem Biophys Res Commun 373, 319-324.
Ebi, K.L., and Nealon, J. (2016). Dengue in a changing climate. Environ Res 151, 115-123.
Fahimi, H., Mohammadipour, M., Haddad Kashani, H., Parvini, F., and Sadeghizadeh, M. (2018). Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 102, 2977-2996.
Fonseca, B.D., Diering, G.H., Bidinosti, M.A., Dalal, K., Alain, T., Balgi, A.D., Forestieri, R., Nodwell, M., Rajadurai, C.V., Gunaratnam, C., et al. (2012). Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 287, 17530-17545.
Gebhard, L.G., Filomatori, C.V., and Gamarnik, A.V. (2011). Functional RNA elements in the dengue virus genome. Viruses 3, 1739-1756.
Gebhard, L.G., Iglesias, N.G., Byk, L.A., Filomatori, C.V., De Maio, F.A., and Gamarnik, A.V. (2016). A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production. J Virol 90, 5451-5461.
Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martinez, E., et al. (2010a). Dengue: a continuing global threat. Nat Rev Microbiol 8, S7-16.
Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Jeremy, F., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martinez, E., et al. (2010b). Dengue: a continuing global threat. Nature Reviews Microbiology, S7-S16.
Heaton, N.S., and Randall, G. (2010). Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422-432.
Ho, M.R., Tsai, T.T., Chen, C.L., Jhan, M.K., Tsai, C.C., Lee, Y.C., Chen, C.H., and Lin, C.F. (2017). Blockade of dengue virus infection and viral cytotoxicity in neuronal cells in vitro and in vivo by targeting endocytic pathways. Sci Rep 7, 6910.
Hsieh, S.C., Wu, Y.C., Zou, G., Nerurkar, V.R., Shi, P.Y., and Wang, W.K. (2014). Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. J Biol Chem 289, 33149-33160.
Huang, L., Yang, M., Yuan, Y., Li, X., and Kuang, E. (2017). Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation. Antiviral Res 138, 68-78.
Jordan, T.X., and Randall, G. (2017). Dengue Virus Activates the AMP Kinase-mTOR Axis To Stimulate a Proviral Lipophagy. J Virol 91.
Jurgeit, A., McDowell, R., Moese, S., Meldrum, E., Schwendener, R., and Greber, U.F. (2012). Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Pathog 8, e1002976.
Kang, S., Shields, A.R., Jupatanakul, N., and Dimopoulos, G. (2014). Suppressing dengue-2 infection by chemical inhibition of Aedes aegypti host factors. PLoS Negl Trop Dis 8, e3084.
Kato, F., and Hishiki, T. (2016). Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms. Viruses 8.
Kim, D.H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175.
Klema, V.J., Padmanabhan, R., and Choi, K.H. (2015). Flaviviral Replication Complex: Coordination between RNA Synthesis and 5 ''-RNA Capping. Viruses-Basel 7, 4640-4656.
Klema, V.J., Ye, M., Hindupur, A., Teramoto, T., Gottipati, K., Padmanabhan, R., and Choi, K.H. (2016). Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface. PLoS Pathog 12, e1005451.
Lai, C.Y., Tsai, W.Y., Lin, S.R., Kao, C.L., Hu, H.P., King, C.C., Wu, H.C., Chang, G.J., and Wang, W.K. (2008). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 82, 6631-6643.
Lee, Y.R., Hu, H.Y., Kuo, S.H., Lei, H.Y., Lin, Y.S., Yeh, T.M., Liu, C.C., and Liu, H.S. (2013). Dengue virus infection induces autophagy: an in vivo study. J Biomed Sci 20, 65.
Li, L., Lok, S.M., Yu, I.M., Zhang, Y., Kuhn, R.J., Chen, J., and Rossmann, M.G. (2008). The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319, 1830-1834.
Li, Y., Li, P.K., Roberts, M.J., Arend, R.C., Samant, R.S., and Buchsbaum, D.J. (2014). Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett 349, 8-14.
Li, Z., Brecher, M., Deng, Y.Q., Zhang, J., Sakamuru, S., Liu, B., Huang, R., Koetzner, C.A., Allen, C.A., Jones, S.A., et al. (2017). Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res 27, 1046-1064.
Libraty, D.H., Young, P.R., Pickering, D., Endy, T.P., Kalayanarooj, S., Green, S., Vaughn, D.W., Nisalak, A., Ennis, F.A., and Rothman, A.L. (2002). High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 186, 1165-1168.
Lin, K.H., Ali, A., Rusere, L., Soumana, D.I., Kurt Yilmaz, N., and Schiffer, C.A. (2017). Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side. J Virol 91.
Low, J.G., Ooi, E.E., and Vasudevan, S.G. (2017). Current Status of Dengue Therapeutics Research and Development. J Infect Dis 215, S96-S102.
Low, J.G., Sung, C., Wijaya, L., Wei, Y., Rathore, A.P.S., Watanabe, S., Tan, B.H., Toh, L., Chua, L.T., Hou, Y., et al. (2014). Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis 14, 706-715.
Mackenzie, J.M., Jones, M.K., and Young, Y.R. (1996). Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220, 232-240.
Miller, S., Kastner, S., Krijnse-Locker, J., Buhler, S., and Bartenschlager, R. (2007). The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282, 8873-8882.
Mosso, C., Galvan-Mendoza, I.J., Ludert, J.E., and del Angel, R.M. (2008). Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378, 193-199.
Muller, D.A., and Young, P.R. (2013). The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir Res 98, 192-208.
Munoz-Jordan, J.L., Laurent-Rolle, M., Ashour, J., Martinez-Sobrido, L., Ashok, M., Lipkin, W.I., and Garcia-Sastre, A. (2005). Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79, 8004-8013.
Munoz-Jordan, J.L., Sanchez-Burgos, G.G., Laurent-Rolle, M., and Garcia-Sastre, A. (2003). Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100, 14333-14338.
Murray, N.E., Quam, M.B., and Wilder-Smith, A. (2013). Epidemiology of dengue: past, present and future prospects. Clin Epidemiol 5, 299-309.
Murrell, S., Wu, S.C., and Butler, M. (2011). Review of dengue virus and the development of a vaccine. Biotechnol Adv 29, 239-247.
Netsawang, J., Noisakran, S., Puttikhunt, C., Kasinrerk, W., Wongwiwat, W., Malasit, P., Yenchitsomanus, P.T., and Limjindaporn, T. (2010). Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res 147, 275-283.
Nguyen, N.M., Tran, C.N., Phung, L.K., Duong, K.T., Huynh Hle, A., Farrar, J., Nguyen, Q.T., Tran, H.T., Nguyen, C.V., Merson, L., et al. (2013). A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J Infect Dis 207, 1442-1450.
Oshiro, N., Yoshino, K., Hidayat, S., Tokunaga, C., Hara, K., Eguchi, S., Avruch, J., and Yonezawa, K. (2004). Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9, 359-366.
Perera, R., and Kuhn, R.J. (2008). Structural proteomics of dengue virus. Curr Opin Microbiol 11, 369-377.
Perry, S.T., Buck, M.D., Plummer, E.M., Penmasta, R.A., Batra, H., Stavale, E.J., Warfield, K.L., Dwek, R.A., Butters, T.D., Alonzi, D.S., et al. (2013). An iminosugar with potent inhibition of dengue virus infection in vivo. Antiviral Res 98, 35-43.
Pierson, T.C., and Diamond, M.S. (2012). Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2, 168-175.
Rajapakse, S., Rodrigo, C., and Rajapakse, A. (2012). Treatment of dengue fever. Infect Drug Resist 5, 103-112.
Rodenhuis-Zybert, I.A., Wilschut, J., and Smit, J.M. (2010). Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67, 2773-2786.
Rogers, D.M., Kent, M.S., and Rempe, S.B. (2015). Molecular basis of endosomal-membrane association for the dengue virus envelope protein. Biochim Biophys Acta 1848, 1041-1052.
Sangiambut, S., Keelapang, P., Aaskov, J., Puttikhunt, C., Kasinrerk, W., Malasit, P., and Sittisombut, N. (2008). Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection. J Gen Virol 89, 1254-1264.
Screaton, G., Mongkolsapaya, J., Yacoub, S., and Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15, 745-759.
Shiryaev, S.A., Farhy, C., Pinto, A., Huang, C.T., Simonetti, N., Ngono, A.E., Dewing, A., Shresta, S., Pinkerton, A.B., Cieplak, P., et al. (2017). Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res 143, 218-229.
Smit, J.M., Moesker, B., Rodenhuis-Zybert, I., and Wilschut, J. (2011). Flavivirus cell entry and membrane fusion. Viruses 3, 160-171.
Tam, D.T., Ngoc, T.V., Tien, N.T., Kieu, N.T., Thuy, T.T., Thanh, L.T., Tam, C.T., Truong, N.T., Dung, N.T., Qui, P.T., et al. (2012). Effects of short-course oral corticosteroid therapy in early dengue infection in Vietnamese patients: a randomized, placebo-controlled trial. Clin Infect Dis 55, 1216-1224.
Teo, C.S., and Chu, J.J. (2014). Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein. J Virol 88, 1897-1913.
Tian, Y.S., Zhou, Y., Takagi, T., Kameoka, M., and Kawashita, N. (2018). Dengue Virus and Its Inhibitors: A Brief Review. Chem Pharm Bull (Tokyo) 66, 191-206.
Tricou, V., Minh, N.N., Van, T.P., Lee, S.J., Farrar, J., Wills, B., Tran, H.T., and Simmons, C.P. (2010). A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 4, e785.
Tsai, T.T., Chen, C.L., Lin, Y.S., Chang, C.P., Tsai, C.C., Cheng, Y.L., Huang, C.C., Ho, C.J., Lee, Y.C., Lin, L.T., et al. (2016). Microglia retard dengue virus-induced acute viral encephalitis. Sci Rep 6, 27670.
Umareddy, I., Chao, A., Sampath, A., Gu, F., and Vasudevan, S.G. (2006). Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J Gen Virol 87, 2605-2614.
Wang, S.F., Chang, K., Loh, E.W., Wang, W.H., Tseng, S.P., Lu, P.L., Chen, Y.H., and Chen, Y.A. (2016a). Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg Microbes Infect 5, e123.
Wang, Y.M., Lu, J.W., Lin, C.C., Chin, Y.F., Wu, T.Y., Lin, L.I., Lai, Z.Z., Kuo, S.C., and Ho, Y.J. (2016b). Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. Antiviral Res 135, 81-90.
Warfield, K.L., Plummer, E.M., Sayce, A.C., Alonzi, D.S., Tang, W., Tyrrell, B.E., Hill, M.L., Caputo, A.T., Killingbeck, S.S., Beatty, P.R., et al. (2016). Inhibition of endoplasmic reticulum glucosidases is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4. Antiviral Res 129, 93-98.
Whitehorn, J., Nguyen, C.V.V., Khanh, L.P., Kien, D.T.H., Quyen, N.T.H., Tran, N.T.T., Hang, N.T., Truong, N.T., Hue Tai, L.T., Cam Huong, N.T., et al. (2016). Lovastatin for the Treatment of Adult Patients With Dengue: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin Infect Dis 62, 468-476.
Wu, C.J., Jan, J.T., Chen, C.M., Hsieh, H.P., Hwang, D.R., Liu, H.W., Liu, C.Y., Huang, H.W., Chen, S.C., Hong, C.F., et al. (2004). Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother 48, 2693-2696.
Wu, H., Bock, S., Snitko, M., Berger, T., Weidner, T., Holloway, S., Kanitz, M., Diederich, W.E., Steuber, H., Walter, C., et al. (2015). Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob Agents Chemother 59, 1100-1109.
Xie, X., Zou, J., Puttikhunt, C., Yuan, Z., and Shi, P.Y. (2015a). Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J Virol 89, 1298-1313.
Xie, X., Zou, J., Wang, Q.Y., and Shi, P.Y. (2015b). Targeting dengue virus NS4B protein for drug discovery. Antiviral Res 118, 39-45.
Xu, M., Lee, E.M., Wen, Z., Cheng, Y., Huang, W.K., Qian, X., Tcw, J., Kouznetsova, J., Ogden, S.C., Hammack, C., et al. (2016). Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 22, 1101-1107.
Yacoub, S., Mongkolsapaya, J., and Screaton, G. (2016). Recent advances in understanding dengue. F1000Res 5.
Yang, C.C., Hu, H.S., Wu, R.H., Wu, S.H., Lee, S.J., Jiaang, W.T., Chern, J.H., Huang, Z.S., Wu, H.N., Chang, C.M., et al. (2014). A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob Agents Chemother 58, 110-119.
Zou, J., Xie, X., Wang, Q.Y., Dong, H., Lee, M.Y., Kang, C., Yuan, Z., and Shi, P.Y. (2015). Characterization of dengue virus NS4A and NS4B protein interaction. J Virol 89, 3455-3470.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊