跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳雯苓
研究生(外文):Wen-Ling Chen
論文名稱:以離子液體水解纖維素之研究
論文名稱(外文):A Study of Cellulose Hydrolysis in an Ionic Liquid
指導教授:洪錫勳洪錫勳引用關係吳俊毅吳俊毅引用關係梁明在
指導教授(外文):Richard S. HorngJiumn-Yih WuMing-Tsai Liang
學位類別:碩士
校院名稱:義守大學
系所名稱:化學工程學系暨生物技術與化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:83
中文關鍵詞:纖維素離子液體葡萄糖還原糖
外文關鍵詞:CelluloseIonic liquidsGlucoseReducing sugar
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1415
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
纖維素生物質通常使用物理或化學方式轉化成醣類和有價值的化學品,但酸水解會產生許多廢酸,對環境影響較大且難以回收再利用。近年來,由於離子液體易於回收再利用且對環境汙染較小,因此離子液體廣泛應用於纖維素水解。
本研究以[Bmim]Cl離子液體作為溶劑,探討不同的操作因子,對纖維素水解反應之影響。後續則將巨王草進行預處理後,於最佳的水解條件下進行水解反應,探討預處理方式對於水解反應之影響。研究結果顯示,在100 ℃下纖維素於離子液體中溶解十二小時,有助於提升葡萄糖產率,再藉由動力學探討得知最佳溶解溫度為140 ℃~160 ℃。不同的硫酸濃度對於纖維素水解反應影響較不顯著,但反應溫度明顯影響總還原糖產率、葡萄糖產率以及產率達最大值之時間。最佳水解條件以反應溫度140 ℃,濃度為4.5×10-4 mmol硫酸,進行纖維素水解反應,得到總還原糖產率之最大值為71.89 %且葡萄糖產率最大值為25.41 %;於相同條件下,進行巨王草水解反應,發現加入過氧化氫之預處理,可以提升總還原糖之生成速率。

Conversion of cellulosic biomass can directly into valuable biofuels and chemicals. However, acid hydrolysis produced much waste acid, the environmental influence is large and difficult to recycle. In recent years, ionic liquids was easy to recycle and less environmental pollution, and therefore ionic liquid widely used in cellulose hydrolysis.
In this study, several operation factors of the cellulose hydrolysis to reducing sugars is investigated in which the ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) is used as solvent with cellulose as raw material. The optimized cellulose hydrolysis condition was used to the pretreated Giant King Grass, to investigate the effects of pretreatment methods for hydrolysis reaction. The yield of hydrolysed glucose by dissolving cellulose for 12 h in ionic liquid at 100 °C is improved. Kinetics analysis of hydrolysis mechanism shows that the best dissolution temperature is from 140 ℃ ~ 160 ℃. It is not obvious to use different catalytic concentrations of sulfuric acid for cellulose hydrolysis reaction, but the effect of reaction temperature is obvious on reducing sugar yield, glucose yield and the peak time of maximum yield. Optimal conditions with hydrolysis reaction temperature 140 ℃ and the concentration of 4.5×10-4 mmol sulfuric acid were carried out to obtain the maximum yield of total reducing sugars and glucose of 71.89 % and 25.41 % respectively. Under the same operating conditions, it is found that the addition of hydrogen peroxide for pretreatment of the Giant King Grass can effectively enhance the generation rate of total reducing sugars.

中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 木質纖維素介紹 2
1-2-1 木質素 2
1-2-2 半纖維素 3
1-2-3 纖維素 3
1-3 木質纖維素之預處理 4
1-3-1 物理預處理 5
1-3-2 物理化學法 6
1-3-3 化學法 7
1-3-4 生物法 8
1-4 生物質之水解 8
1-5 離子液體之介紹 11
1-6研究動機與目的 13
第二章 文獻回顧 14
2-1 離子液體 14
2-1-1 離子液體作為溶劑 14
2-1-2 離子液體作為催化劑 16
2-2 巨王草之介紹 17
2-3 木質纖維素之酸水解 18
第三章 實驗方法與材料 21
3-1 實驗藥品 21
3-2 儀器 22
3-3 巨王草來源 23
3-4 巨王草之成分分析 23
3-5 纖維素水解之步驟 25
3-6巨王草水解 26
3-6-1巨王草研磨 27
3-6-2 預處理 27
3-6-3巨王草水解之步驟 28
3-7 分析方法 29
3-7-1 還原糖之測定 29
3-7-2 葡萄糖和5-HMF之測定 31
第四章 結果與討論 34
4-1 酸水解之參數 35
4-2 溶解時間對纖維素水解反應之影響 37
4-3 酸濃度對纖維素水解反應之影響 40
4-4 反應溫度對纖維素水解反應之影響 44
4-5 利用CO2爆破方式預處理生物質 50
第五章 纖維素在離子液體中水解反應動力學 54
5-1 纖維素水解動力學 54
5-2結果與討論 55
5-2-1 低溫水解反應結果與討論 55
5-2-2 高溫水解反應結果與討論 57
5-3 纖維水解反應動力學 62
第六章 結論 64
第七章 未來展望 65
參考文獻 66

Amarasekara, A. S., et al. (2009) "Hydrolysis and decomposition of cellulose in Bronsted acidic ionic liquids under mild conditions." Industrial & Engineering Chemistry Research, 48 (22): 10152-10155
Alinia, R., et al. (2010). "Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production." Biosystems Engineering, 107: 61-66.
Anastas, P. T., et al. (2003). "Design through the 12 principles of green engineering." Environmental Science & Technology, 37 (5): 94A-101A.
Cole, A. C., et al. (2002) "Novel Bronsted acidic ionic liquids and their use as dual solvent-catalysts." Journal of the American Chemical Society, 124 (21): 5962-5963.
Feng, L., et al. (2008) " Research progress on dissolution and functional modification of cellulose in ionic liquids" Journal of Molecular Liquids, 142: 1-5.
Guo, H., et al. (2012). "Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid." Bioresour Technol, 116: 355-359.
Jiang, F., et al. (2011) "Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids." Journal of Molecular Catalysis A: Chemical, 334: 8-12
Lee, J. (1997). "Biological conversion of lignocellulosic biomass to ethanol." Journal of Biotechnology, 56 (1): 1-24.
Liu, W. et al. (2013) "SO3H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose." Carbohydrate Polymers, 92 (1): 218-222.
McMillan, J. D. (1994). "Enyzmatic Conversion of Biomass for Fuels Production" 294-324.
Mes-Hartree M., et al.(1988). "Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose." Applied Microbiology and Biotechnology. 29: 462-468.
Millett M. A., Effland M. J., Caulfield D. P. (1976). "Influence of fine grinding on the hydrolysis of cellulosic materials-acid versus enzymatic." Advances in Chemistry Series. 181: 71-89.
Mosier, N., et al. (2005). "Features of promising technologies for pretreatment of lignocellulosic biomass." Bioresour Technol, 96 (6): 673-686.
Murugesan S, Linhardt RJ. (2005). "Ionic liquids in carbohydrate chemistry-current trends and future direction." Current Organic Synthesis, 2: 437-451
Neureiter, M., et al. (2002) "Dilute-Acid Hydrolysis of Sugarcane Bagasse at Varying Conditions." Appl Biochem Biotechnol, 98: 49-58
Ng, Hon-Meng., et al. (2015). "Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers." Composites Part B: Engineering, 75: 176-200.
Nguyen, Q., et al. (2002) "Dilute acid / metal salt hydrolysis of lignocellulosics." US Patent 6423145.
Ramakrishnan, S., et al. (2010). "Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions." Bioresour Technol, 101 (13): 4965-4970.
Ramli, N.A. S., et al. (2014) "Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production. " Fuel Processing Technology, 128: 490-498.
Remsing, R. C., et al. (2006). "Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems." Chemical communications (Cambridge, England), (12): 1271-1273.
Rubin, E. M. (2008). "Genomics of cellulosic biofuels." Nature, 454 (7206): 841-845.
Sasaki, M., et al. (2000). "Dissolution and hydrolysis of cellulose in subcritical and supercritical water" Industrial & Engineering Chemistry Research, 39: 2883-2890.
Sun, Y., et al. (2002). "Hydrolysis of lignocellulosic materials for ethanol production: a review." Bioresour Technol, 83 (1): 1-11.
Swatloski, R. P., et al. (2002) "Dissolution of cellulose [correction of cellose] with ionic liquids." Journal of the American Chemical Society, 124 (18): 4974-4975.
Tanaka M., et al. (1990). "n-Butylamine and acid-steam Explosion Pretreatments of Rice straw and hardwood : Effects on Substrate Structure and Enzymatic Hydrolysis. " Enzyme and Microbial Technology, 12 : 190-195.
Walden, P. Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800.
Wang, H., et al. (2012) "Ionic liquid processing of cellulose." Chemical Society Reviews, 41 (4):1519-1537.
Yan Xionga, et al. (2014) "Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst." Chemical Engineering Journal, 235:349-355.
Zhou, C. H., et al. (2011). "Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels." Chemical Society Reviews, 40 (11): 5588-5617.
Zhang, J., et al. (2010) "NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids." Physical Chemistry Chemical Physics, 12 (8): 1941-1947.
Zhu, S., et al. (2006). "The effect of microwave irradiation on enzymatic hydrolysis of rice straw." Bioresour Technol, 97 (15): 1964-1968.
Zhuo K., et al. (2015) "Hydrolysis of cellulose catalyzed by novel acidic ionic liquids." Carbohydrate Polymers, 115: 49-53.
蘆天亮、秦志芳、唐思、周利鵬、蘇運來、楊曉梅,2012,酸性離子液體[Bmim]HSO4催化纖維素水解的研究,鄭州大學學報。
董新榮,胡興鋒,唐祚姣,微波輔助[Bmim]FeC13Br催化稻草秸稈纖維素水解為還原糖的研究,化學工程師。
施建斌,2013,玉米桿活性氧蒸煮過程中半纖維素的結構變化及其機理的研究,華南理工大學。
陳魏,2010,丙酮、乙醇預處理對稻草?解糖化的影響研究,重慶大學。
陸強、趙雪冰、鄭宗明,2013,液体生物燃料技術與工程,上海科學技術出版社。
熊腱、葉君、梁文芷,2000,微波對纖維素超分子架構的影響,華南理工大學學報( 自然科學版 ),28:85-89。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊