跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林正東
研究生(外文):Zheng-DongLin
論文名稱:奈米碳管系列感測器、場發射及電晶體之研製
論文名稱(外文):Fabrication of CNTs-based Gas Sensor, Field Emission, and Field-effect Transistor
指導教授:張守進張守進引用關係楊勝州
指導教授(外文):Shoou-Jinn ChangSheng-Joue Young
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:122
中文關鍵詞:奈米碳管氣體感測場發射場效電晶體
外文關鍵詞:carbon nanotubegas sensorfield emissionField-Effect Transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管為新興之半導體材料,頗具研究價值,本論文研究內容涵蓋三個大方向,包含: (1) 多壁奈米碳管氣體感測器之研製,(2) 多壁奈米碳管場發射之研製,(3) 選擇性提取半導體性單壁奈米碳管與場效電晶體之研製。其個別之研究結果如下所述:
在本文的開頭,我們首先研究成長高密度的多壁奈米碳管,經由電子顯微鏡觀察到平均長度和平均直徑分別為:4.52 um 與 45 nm。第一部分,藉由金屬奈米粒子吸附於奈米碳管表面作為氣體感測之研究。根據氣體感測量測結果發現奈米銀粒子吸附明顯增加感測器的靈敏度。在室溫下通入800 ppm 異丙醇氣體量測,結果發現靈敏度提高至5.31%,並且具有高度穩定性以及快速的反應。此外,本研究提出新方法,將高密度奈米碳管從矽基板轉移至可撓基板上,製作可撓性奈米碳管感測器。利用此轉移方法能夠增加碳管與可撓基板附著力,即使在極端的曲率半徑 933 um 下仍然保持高度的延展性。根據氣體感測量測結果,在奈米碳管表面吸附奈米金粒子,感測器表現出高的靈敏度、穩定性、重現性以及快速的響應,由此結果表明出可撓式奈米碳管氣體感測器的可行性,這將成為更具商業化的潛力。
第二部分,藉由金屬奈米粒子吸附於奈米碳管表面作為場發射之研究。由於奈米碳管具有極小的尖端曲率與高縱橫比,加上藉由金屬觸媒粒子吸附於奈米碳管表面,將可有效的降低材料功函數增進場發射最佳起始電場與臨界電場 J-E 與 I-V 特性。根據場發射量測結果,當發射電流密度達到 10 μA/cm2 下,啟始電場由純碳管的 5.33 V下降到金摻雜碳管的 4.84 V直到銀摻雜碳管的 3.94 V。金屬吸附奈米碳管增強的場發射性能的主要原因是較低的有效功函數。此外,本研究提出新方法,將高密度奈米碳管由矽基板轉移至可撓基板上,製作可撓性奈米碳管場發射元件。根據場發射量測結果,將可撓基板重覆彎曲至曲率半徑5 mm 下經過100次後,啟始電場分別為:3.60 V/μm 與 3.72 V/μm。由此結果表明出奈米碳管具有良好的機械穩定性。
第三部分,使用高品質的單壁奈米碳管,藉由分離的方式將半導體性奈米碳管從中提取,主要利用聚合物poly(3-dodecylthiophene) (rr-P3DDT)對半導體性的奈米碳管會產生包覆的特性並且排斥金屬性的奈米碳管,因此將其離心後可提取半導體性的奈米碳管。根據拉曼光譜分析結果,顯示出成功的分離出半導體性奈米碳管。我們使用分離過後的純半導體性奈米碳管做為場效電晶體主動層,該元件表現出高的開關比為107,次臨界擺幅為154 mV/dec。本研究所提出的方法能夠有效分離出半導體性奈米碳管,對於未來商業化有相當大的潛力,並且適合大面積電子設備使用。

In this study, the growth of high-density multi-wall nanotubes (MWNTs) on oxidized Si substrate was investigated. The obtained average length and diameter of the CNTs were approximately 4.52 and 45 nm, respectively. The adsorption of metal nanoparticle on nanotube surfaces and the fabrication of MWNT-based gas sensors were also examined. Ag adsorption to the MWNTs significantly increased device sensitivity and provided a 5.31% increase in RT sensitivity over that of MWNTs for an ambient isopropyl alcohol gas concentration of 800 ppm. The response speed and stability of the fabricated sensor were favorable. Moreover, the direct transfer of high-density MWNTs from a SiO2/Si substrate to a flexible substrate was demonstrated. The strong adhesion of the MWNTs with the flexible substrate was maintained although the substrate was bent into an extreme state with a radius of curvature of 993 μm. The surface modification of the MWNT-networked films with size-controlled Au nanoclusters enhanced gas sensitivity. The flexible MWNT sensor exhibited reproducibility, fast response, high stability, and high sensitivity. Results demonstrate the feasibility of manufacturing flexible MWNT gas sensors using the transfer process. This finding represents a major step toward low-cost and large-scale production of this class of device.
The measurements of MWNT-based field emission show that a low turn-on electric field with the emission current density of 10 μA/cm2 could be achieved because of metal adsorption. The measured values of Eto for Au- and Ag-coated MWNTs were 5.33, 4.84, and 3.94 V/μm. The comparative investigation indicates that Ag nanoparticle decoration on MWNT decreased work function from 5 eV to 3.94 eV. The enhanced field emission properties of metal-coated MWNTs were caused mainly by low effective work function. The flexible field emission with MWNT thin films was fabricated using a transfer method. In the turn-on electric field with emission current density of 10 μA/cm2, the measured values of Eto with and without bending test were 3.60 and 3.72 V/μm. The MWNT film showed good mechanical stability at a significantly small bending radius of 5 mm. The good mechanical bendability is due to the cracking-resistant nanotube morphology. A simple method for selectively separating semiconducting SWNTs (s-SWNTs) was developed. The samples were examined by Raman spectroscopy with an excitation laser of 633 and 785 nm wavelengths. The spectrum reveals that metallic SWNTs and regioregular poly(3-dodecylthiophene) were completely removed and s-SWNTs were remained. SWNT-based field-effect transistors (FETs) were fabricated by dip-coating method. The device with selective extraction had a high on/off ratio and low subthreshold swing. The transistor with selective extraction had an on/off ratio of 107 and a subthreshold swing of 154 mV/dec. The proposed convenient and effective s-SWNT sorting process can be used in the commercial manufacturing of SWNT-based FETs for low-cost and large-scale electronic devices.

Contents
摘要 I
Abstract IV
Acknowledgement VII
Contents VIII
Table Captions XI
Figure Captions XII

Chapter 1 Introduction
1-1 Background 1
1-2 Basic properties of CNT 2
1-3 Electronic Properties 3
1-4 Organization of this dissertation 3

Chapter 2 Methods for Synthesizing MWNTs
2-1 Growth Mechanism for MWNTs 12
2-2 Arc discharge 12
2-3 Laser ablation 13
2-4 CVD 13
2-5 Raman Spectroscopy of CNTs 13
2-6 Experimental details and analytic 14

Chapter 3 Application of CNTs in gas sensor
3-1 Introduction 22
3-2 Enhanced carbon nanotubes gas sensor with adsorbed metal nanoparticles 23
3-3 Flexible gas sensors with MWNTs thin films by using a simple transfer method 29
3-4 Summary 35
Chapter 4 Improved field emission properties of metal-decorated multi-walled carbon nanotubes
4-1 Introduction 66
4-2 Experiments 68
4-3 Results and discussion 69
4-4 Field emission based on MWNT thin films by a simple transfer method on flexible substrate 71
4-5 Summary 73

Chapter 5 Field-Effect Transistor Properties of Semiconducting Single Walled Carbon Nanotubes by Selective Extraction
5-1 Introduction 85
5-2 SWNTs Schottky contact 87
5-3 The fabrication of SWNTs FET 87
5-4 The Raman analysis of SWNTs 89
5-5 The field-effect transistor characteristics of SWNTs 91
5-6 Summary 93

Chapter 6 Conclusions and Future Work
6-1 Conclusions 103
6-2 Future work 105
Reference 106


[1]S. Iijima, “Helical microtubules of graphitic carbon, Nature, vol. 354, no. 6348, pp. 56-58, 1991.
[2] S. J. Kang, Y. J. Song, Y. J. Yi, W. M. Choi, S. M. Yoon, and J. Y. Choi, “Work-function engineering of carbon nanotube transparent conductive films, Carbon, vol. 48, no. 2, pp. 520-524, 2010.
[3]D. A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, and R.E. Smalley, “Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett., vol. 74, no. 25, pp. 3803-3805, Jun. 21 1999.
[4]S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa, and Z. F. Ren, “Field emission of carbon nanotubes grown on carbon cloth, Appl. Phys. Lett., vol. 85, no. 5, pp. 810-812, 2004.
[5]M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, “Carbon Nanotubes: Synthesis, Structure, and Application, Mater. Sci. Eng., vol. 43, no. 3, pp. 61-102, 2004.
[6]S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes, Appl. Phys. Lett., vol. 84, no. 3, pp. 413-415 , 2004.
[7]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene, Nature, vol. 318, no. 6042, pp. 162-163, 1985.
[8]M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes, Carbon, vol. 33, pp. 883-891, 1995.
[9]X. E. E. Reynhout, “The Wondrous World of CarbonNanotubes, University of Technology; Eindhoven, The Netherlands, pp. 12-13, 2003.
[10]R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Physical Properties of Carbon Natotubes, Imperial College Press, London, 1998.
[11] P. R. Wallace, “The band theory of graphite, Phys. Rev., vol. 71, no. 9, pp. 622-634, 1947.
[12] H. Dai, “Carbon nanotubes: opportunities and challenges, Surface Science, vol. 500, no. 1-3, pp. 218-241, 2002.
[13] A. Oberlin, M. Endo, T. Koyama, “High resolution electron microscope observations of graphitized carbon fibers, Carbon, vol. 14, no. 2, pp. 133-135, 1976.
[14]A. Oberlin, M. Endo, T. Koyama, “Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth, vol. 32, no. 3, pp. 335-349, 1976.
[15]T. Baird, J. R. Fryer, B. Giant, “Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700°C, Carbon, vol. 12, no. 5, pp. 591-602, 1974.
[16]S. Chopra, A. Pham, J. Gaillard, A. Parker and A. M. Rao, “Carbon-nanotube-based resonant-circuit sensor for ammonia, Appl. Phys. Lett, vol. 80, no. 24, pp. 4632-4634, 2002.

[17]W. A. de Heer, A. Chatelain and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source, Science, vol. 270, no. 5239, pp. 1179-1180, 1995.
[18]S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nmdiameter, Nature, vol. 363, no. 6430, pp. 603-605, 1993.
[19]D. S. Bethune, C. H. Kiang, M.S. deVries, G. Gorman, R. saroy,J. Vazguez, and R. Beyers, “Cobalt-catalyzed growth of carbonnanotubes with single-atomic-layerwalls, Nature, vol. 605, no.6430, pp. 605-607, 1993.
[20] 蕭至宏,2007,場發射型奈米碳管氣體感測器之研究,雲林科技大學電子工程系研究所,碩士論文。
[21] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol. 273, no. 5274, pp. 483-487, 1996.
[22]S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, “Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes, Phys. Rev. Lett., vol. 80, no. 17, pp. 3779-3782, 1998.
[23]M. Milnera, J. Ku¨rti, M. Hulman, and H. Kuzmany, “Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes, Phys. Rev. Lett., vol. 84, no. 6, pp. 1324-1327, 2000.
[24] S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski and J. Robertson, “Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition, J. Appl. Phys., vol. 94, no. 9, pp. 6005-6012, 2003.
[25] C. S. Huang, B. R. Huang, Y. H. Jang, M. S. Tsai and C. Y. Yeh, “Three-terminal CNT gas sensor for N-2 detection, Diamond Relat. Mater., vol. 14, no. 11, pp. 1872-1875, 2005.
[26] L.K. Randeniya, P.J. Martin, A. Bendavid, and J. McDonnell, “Ammonia sensing characteristics of carbon-nanotube yarns decorated with nanocrystalline gold, Carbon, vol. 49, no. 15, pp. 5265-5270, 2011.
[27] E.R. Leite, I.T. Weber, E. Longo and J.A. Varela, “A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications, Advanced Materials, vol. 12, no. 13, pp. 965-968, 2011.
[28] Z.L.Wang, “Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-From materials to nanodevices, Advanced Materials, vol. 15, no. 5, pp. 432-436, Mar. 4 2003.
[29] S. Srivastava, S. Kumar, V.N. Singh, M. Singh and Y.K. Vijay, “Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing, International Journal of Hydrogen Energy, vol. 36, no. 10, pp. 6343-6355, 2011.
[30] S.N. Das, J.P. Kar, J.H. Choi, T.I. Lee, K.J. Moon and J.M. Myoung, “Fabrication and characterization of ZnO single nanowire-based hydrogen sensor, Journal of Physical Chemistry C, vol. 114, no. 3, pp. 1689-1693, 2010.
[31] C.S. Rout, M. Hegde and C.N.R Rao, “H2S sensors based on tungsten oxide nanostructures, Sensors and Actuators B, vol. 128, no. 2, pp. 488-493, 2008.
[32]Safety (MSDS) data for 2-propanol. Oxford University.
[33]Fischer Scientific (MSDS) for Isopropyl Alcohol.
[34] J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dai, “Nanotube molecular wires as chemical sensors, Science, vol. 287, no. 5453 pp. 622-625, 2000.
[35] A. Modi, N. Koratkar, E. Lass, B. Wei and P.M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes, Nature, vol. 424, no. 6945, pp. 171-174, 2003.
[36] K. A. Joshi, M. Prouza, M. Kum, J. Wang, J. Tang, R. Haddon, W. Chen and A. Mulchandani, “V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode, Analytical Chemistry, vol. 78, no. 1, pp. 331-336, 2006.
[37] M. Penza, M, Alvisi. R. Rossi, E. Serra, R. Paolesse, A. D'Amico and C. Di Natale, “Carbon nanotube films as a platform to transduce molecular recognition events in metalloporphyrins, Nanotechnology, vol. 22, no. 12, pp. 125502, 2011.
[38] M. Penza, R. Rossi, M. Alvisi, G. Cassano and E. Serra, “Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications, Sens. Actuators B, vol. 140, no. 1, pp. 176-184, 2009.
[39] C. Emmenegger, J. M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zuttel and L. Schlapbach, “Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism, Carbon, vol. 41, no. 3, pp. 539-547, 2003.
[40] A. K. Das and C. R. Raj, “Iodide-Mediated Reduction of AuCl4- and a New Green Route for the Synthesis of Single Crystalline Au Nanostructures with Pronounced Electrocatalytic Activity, J. Phys. Chem. C, vol. 115, no. 43, pp. 21041-21046, 2011.
[41] M. N. Zhang, L. Su and L. Q. Mao, “Surfactant functionalization of carbon nanotubes (CNT) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid, Carbon, vol. 44, no. 2, pp. 276-283, 2006.
[42] E. H. Espinosa, R. Lonescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. J. Pireaux and E. Llobet, “Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing, Thin Solid Films, vol. 515, no. 23, pp. 8322-8327, 2007.
[43] J. Y. Miao, D. W. Hwang, K. V. Narasimhulu, P. I. Lin, Y. T. Chen, S. H. Lin and L. P. Hwang, “Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts, Carbon, vol. 42, no. 4, pp. 813-822, 2004.
[44] S. M. Cui, H. H. Pu, G. H. Lu, Z. H. Wen, E. C. Mattson, Hirschmugl C, M. Gajdardziska Josifovska, M. Weinert and J. Chen, “Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes, ACS Appl Mater Interfaces, vol. 4, no. 9, pp. 4898-4904, 2012.
[45] N. R. C. Raju, K. J. Kumar and A. J. Subrahmanyam, “Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth, J Phys D-Appl Phys, vol. 42, no. 13, pp. 135411, 2012.
[46]M. Batzill and U. Diebold, “The surface and materials science of tin oxide, Prog Surf Sci, vol. 79, no. 2-4, pp. 47-154, 2005.
[47]G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink and P. J. Kelly, “Doping graphene with metal contacts, Phys Rev Lett, vol. 101, no. 2, pp. 026803, 2008.
[48]F. Bartolucci, R, Franchy, J. C. Barnard, R. E. Palmer “Two Chemisorbed Species of O2 on Ag(110), Phys Rev Lett, vol. 80, no. 23, pp. 5224-5227, 1998.
[49]V. V. Petrov, T. N. Nazarova, A. Korolev and N. F. Kopilova, “Thin sol-gel SiO2-SnOx-AgOy films for low temperature ammonia gas sensor, Sens Actuators B, vol. 133, no. 1, pp. 291-295, 2008.
[50]N. Yamazoe, “New approaches for improving semiconductor gas, Sens Actuators B, vol. 5, no. 1-4, pp. 7-19, 1991.
[51]S. J. Chang, T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chan, C. L. Hsu, Y. R. Lin, B. R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption, IEEE transactions on nanotechnology, vol.7, no. 6, pp.754-759, 2008.
[52]D. Kohl, “The role of noble-metals in the chemistry of solid-state gas sensors, Sens. Actuators B, vol. 1, no. 1-6, pp. 158-165, 1990.
[53]O. K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey and C.A. Grimes, “Gas sensing characteristics of multi-wall carbon nanotubes, Sensors and Actuators B, vol.81, no. 1, pp.32-41, 2001.
[54]G. Stan, M. J. Bojan, S. Curtarolo, S. M. Gatica and M. W. Cole, “Uptake of gases in bundles of carbon nanotubes Uptake of gases in bundles of carbon nanotubes, Physical Review B, vol. 62, no. 3, pp. 2173-2180, 2000.
[55] K. Parikh, K. Cattanach, R. Rao, D. S. Suh, A. Wu and S.K. Manohar, “Flexible vapor sensors using single walled carbon nanotubes, Sens. Actuators B, vol. 113, no. 1, pp. 55-63, 2006.
[56]K. Mitsubayashi, Y. Wakabayashi, D. Murotomi, T. Yamada, T. Kawase, S. Iwagaki and I. Karube, “Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring, Sens. Actuators B, vol. 95, no. 1-3, pp. 373-377, 2003.
[57] J. J. Zhao, A Buldum, J. Han and J. P. Lu, “Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology, vol. 13, no. 2, pp. 195-200, Apr. 2002.
[58] B. R. Huang and T. C. Lin, “A novel technique to fabricate horizontally aligned CNT nanostructure film for hydrogen gas sensing, International Journal of Hydrogen Energy, vol. 36, vol. 24, pp. 15919-15926, 2011.
[59] D. R. Kauffman and A. Star, “Chemically induced potential barriers at the carbon nanotube metal nanoparticle interface, Nano Lett, vol. 7, vol. 7, pp. 1863-1868, 2007.
[60] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., vol. 75, no. 20, pp. 3129-3131 , 1999.
[61] C. A. Spindt, “A thin-film field-emission cathode, J. Appl. Phys., vol. 39, no. 7, pp. 3504-3505, 1968.
[62] R. H. Fowler, and L. W. Nordheim, “Electron Emission in Intense Electric fields, FieldsProc. R. Soc. London, Ser. A, vol. 119, no. 781, pp. 173-181, 1928.
[63] Y. Zhao, B. Zhang, N. Yao, G. Sun, and J. Li, “Improved field emission properties from metal-coated diamond films, Diamond Relat. Mater., vol. 16, no. 3, pp.650-653 , 2007.
[64] R. K. Fowler and L. W. Nordheim, “Electron emission in intense electric fields, Proc. Roy. Soc. (London), A, vol. 119 no. 781, pp. 173-181, 1928.
[65] E.W.Müller, “Electron microscopic observations of field cathodes, Z. Physik, vol. 106, no. 5, pp. 541-550, 1937.
[66] E. L. Murphy and R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region, Phys. Rev., vol. 102, no. 6, pp. 1464-1473, 1956.
[67] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, “Field-Emitter Arrays Applied to Vacuum Fluorescent Display, IEEE Trans. Electron Devices, vol. 36, no. 1, pp. 225-228, 1989.
[68] L. F. Chen, Y. H. Mi, H. L. Ni, Z. G. Ji, J. H. Xi, X. D. Pi, and H. F. Zhao, “Enhanced field emission from carbon nanotubes by electroplating of silver nanoparticles, J. Vac. Sci. Technol. B, vol 29, no. 4, pp. 041003-1-041003-4, 2011.
[69] S. Shrestha, W. C. Choi, W. Song, Y. T. Kwon,S. P. Shrestha, and C. Y. Park, “Preparation and field emission properties of Er-decorated multiwalled carbon nanotubes, Carbon, vol. 48, no. 1, pp. 54-59, 2010.
[70] Y. Wei, W. Wei, L. Liu, and S. S. Fan, “Mounting multi-walled carbon nanotubes on probes by dielectrophoresis, Diamond Relat. Materials, vol 17, no. 11, pp. 1877-1880, 2008.
[71] J. T. Li, W. D. Schneider, and R. Berndt, “Local density of states from spectroscopic scanning-tunneling-microscope images: Ag(111), Phys. Rev. B, vol. 56, no. 12, pp. 7656-7659, 1997.
[72] Y. H. Chen, C. T. Hu, and I. N. Lin, “Modification on the electron field emission properties of diamond films: The effect of bias voltage applied in situ, J. Appl. Phys. vol. 84, no. 7, pp. 3890-3894, 1998.
[73] A. Pandey, A. Prasad, J. P. Moscatello, M. Engelhard, C. M. Wang, and Y. K. Yap, “Very Stable Electron Field Emission from Strontium Titanate Coated Carbon Nanotube Matrices with Low Emission Thresholds, ACS Nano., vol 7, no. 1, pp. 117-125, 2013.
[74] G. Gruner, “Carbon nanotube films for transparent and plastic electronics, J. Mater. Chem. vol. 16, no. 35, pp. 3533-3539, 2006.
[75] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes, Phys. Rev. Lett. vol. 87, no. 21, pp. 215502, 2001.
[76] A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad and P. M. Ajayan, “Super-Compressible Foamlike Carbon Nanotube Films, Science, vol. 310, no. 5752, pp. 1307-1310, 2005.
[77] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley and R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes, Science, vol. 298, no. 5605, pp. 2361-2366, 2002.
[78] Q. Cao and J. A. Rogers, “Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects, Advanced Materials, vol. 21, no. 1, pp. 29-53, 2009.
[79] A. Star, T. R. Han, V. Joshi, J. C. P. Gabriel, and G. Grüner, “Nanoelectronic carbon dioxide sensors, Advanced Materials, vol. 16, no. 22, pp. 2049-2052, 2004.
[80] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu and T. L. Reinecke, “Chemical detection with a single-walled carbon nanotube capacitor, Science, vol. 307, no. 5717, pp. 1942-1945, 2005.
[81] M.E. Roberts, M.C. LeMieux, Z. Bao, “Sorted and Aligned Single-Walled Carbon Nanotube Networks for Transistor-Based Aqueous Chemical Sensors, ACS Nano, vol. 3, no. 10, pp. 3287-3293, 2009.
[82] H. Gu and T. M. Swager, “Fabrication of Free-standing, Conductive, and Transparent Carbon Nanotube Films Advanced Materials, vol. 20, no. 23, pp. 4433-4437, 2008.
[83] Z. D. Lin, C. H. Hsiao, S. J. Young, C. S. Huang, S. J. Chang and S. B. Wang, “Carbon Nanotubes With Adsorbed Au for Sensing Gas, IEEE Sensors Journal, vol. 188, no. 6, pp. 1230-1234, 2013.
[84] Z. D. Lin, S. J. Young, C. H. Hsiao, S. J. Chang and C. S. Huang, “ Improved Field Emission Properties of Ag-Decorated Multi-Walled Carbon Nanotubes, IEEE PHOTONIC. TECH. L., vol. 25, no. 11, pp. 1017-1019, 2013.
[85] Z. D. Lin, C. H. Hsiao, S. J. Chang and S. J. Young “Adsorption sensitivity of Ag-decorated carbon nanotubes towards gas-phase compounds, Sensors and actuators. B, Chemical., vol. 25, pp. 1017-1019, 2013.
[86] Z. D. Lin, S. J. Young and S. J. Chang, “ CO2 gas sensors based on Carbon nanotube thin films by using a Simple Transfer Method on flexible substrate, IEEE Sensors Journal, vol. 15, no. 12, pp. 7017-7020, 2015.
[87] Z. D. Lin, S. J. Young and S. J. Chang, “Carbon nanotube thin films functionalized via loading of Au nanoclusters for flexible gas sensors devices, IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 476-480, 2015.
[88] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett., Vol. 79, no. 8, pp.1172-1174, 2001.
[89] M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. W. Shan, C. Kittrell, R. H. Hauge, J. M. Tour and R. E. Smalley, “Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization, Science, vol. 301, no. 5639, pp. 1519-1522, 2003.
[90] C. M. Yang, K. H. An, J. S. Park, K. A. Park, S. C. Lim, S. H. Cho, Y. S. Lee, W. Park, C. Y. Park and Y. H. Lee, “Preferential Etching of Metallic Single-Walled Carbon Nanotubes with Small Diameter by Fluorine Gas, Phys. Rev. B, vol. 73, pp. 7, 2006.
[91] R. Krupke, F. Hennrich, H. V. Lohneysen and M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes, Science, vol. 301, no. 5631, pp. 344-347, 2003.
[92] S. Mesgari and Y. F. Poon, “High Selectivity cum Yield Gel Electrophoresis Separation of Single-Walled Carbon Nanotubes Using a Chemically Selective Polymer Dispersant, J. Phys. Chem. C, vol. 116, no. 18, pp. 10266-10273, 2012.
[93] H. Li, B. Zhou, L. Gu, W. Wang, K. A. S. Fernando, S. Kumar, L. F. Allard and Y. P. Sun, “Selective Interactions of Porphyrins with Semiconducting Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., vol. 126, no. 4, pp. 1014-1015, 2004.
[94] M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. McLean and G. B. Onoa, “Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly, Science, vol. 302, no. 5650, pp. 1545-1548, 2003.
[95] X. M. Tu, S. Manohar, A. Jagota and M. Zheng, “DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes, Nature, vol. 460, no. 7252, pp. 250-253, 2009.
[96] M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp and M. C. Hersam, “Sorting Carbon Nanotubes by Electronic Structure Using Density Differentiation, Nat. Nanotechnol., vol. 1, no. 1, pp. 60-65, 2006.
[97] A. Nish, J. Y. Hwang, J. Doig and R. J. Nicholas, “Highly Selective Dispersion of Single Walled Carbon Nanotubes Using Aromatic Polymers, Nat. Nanotechnol.,vol. 2, no. 10, pp. 640-646, 2007.
[98] W. H. Yi, A. Malkovskiy, Q. H. Chu, A. P. Sokolov, M. L. Colon, M. Meador and Y. Pang, “Wrapping of Single-Walled Carbon Nanotubes by a π-Conjugated Polymer: The Role of Polymer Conformation-Controlled Size Selectivity, J. Phys. Chem. B, vol. 112, no. 39, pp. 12263-12269, 2008.
[99] L. Zhengtang, D. P. Lisa , L. H. Gary, and P. Fotios, “(n,m) Abundance Evaluation of Single-Walled Carbon Nanotubes by Fluorescence and Absorption Spectroscopy, J. Am. Chem. Soc., vol. 128, no. 48, pp 15511-15516, 2006.
[100] S. Reich, C. Thomsen and Robertson, “Exciton resonances quench the photoluminescence of zigzag carbon nanotubes, J. Phys. ReV. Lett., vol. 95, no. 7, pp. 077402/1-077402/4, 2005.
[101] Y. Oyama, R. Saito, K. Sato, J. Jiang, G. G. Samsonidze, A. Grueneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes, Carbon, vol. 44, no. 5, pp. 873-879, 2006.
[102] S. Park, H. W. Lee, H. Wang, S. Selvarasah, M. R. Dokmeci, Y. J. Park, S. N. Cha, J. M. Kim, and Z. Bao, “Highly Effective Separation of Semiconducting Carbon Nanotubes verified via Short-Channel Devices Fabricated Using Dip-Pen Nanolithography, ACS Nano, vol. 6, no. 3, pp. 2487-2496, 2012.
[103] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett., vol. 73, no. 17, pp. 2447-2449, 1998.
[104] M.H. Andrew Ng, L.T. Hartadi, H. Tan, C.H. Patrick, “Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates, Nanotechnology, vol. 19, no. 20, pp. 205703, 2008.
[105] H. W. Lee, Y. Yoon, S. Park, J. H. Oh, S. Hong, L. S. Liyanage, P. H. S. Wong, J. B. H. Tok, J. M. Kim and Z. Bao, “Selective Dispersion of High Purity Semiconducting Single- Walled Carbon Nanotubes with Regioregular Poly (3-alkylthiophene)s., Nat. Commun., vol. 2, pp. 541, 2011.
[106] Z. Luo, L. D. Pfefferle, G. L. Haller and F. Papadimitrakopoulos, “(n,m) Abundance Evaluation of Single-Walled Carbon Nanotubes by Fluorescence and Absorption Spectroscopy, J. Am. Chem. Soc., vol. 128, no. 48, pp. 15511-15516, 2006.
[107] M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour and R. E. Smalley, “Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization, Science, vol. 301, no. 5639, pp. 1519-1522, 2003.
[108] A. Jorio, R. Saito and J. H. Hafner, “Structural ( n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering, Phys. Rev. Lett., vol. 86, no. 6, pp. 1118-1121, 2001.
[109] A. Jorio, A. G. Souza Filho and G. Dresselhaus, “G-band resonant Raman study of 62 isolated single-wall carbon nanotubes, Phys. Rev. B: Condens. Matter Mater. Phys., vol. 65, no. 15, pp. 155412, 2002.
[110] C. Wang, L. Qian; W. Xu, S. Nie, W. Gu, J. Zhang, J. Zhao, J. Lin, Z. Chen, Z. Cui, “ High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes, Nanoscale, vol. 5, no. 10, pp. 4156-4161, 2013.
[111] S. J. Kang, C. Kocabas, T. Ozel, M. S. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin and J. A. Rogers, “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nat. Nanotechnol., vol. 2, no. 4, pp. 230-236, 2007.
[112] F. Sajed and C. Rutherglen, “All-printed and transparent single walled carbon nanotube thin film transistor devices, Appl. Phys. Lett., vol. 103, no. 14, pp. 143303, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊