[1]S. Iijima, “Helical microtubules of graphitic carbon, Nature, vol. 354, no. 6348, pp. 56-58, 1991.
[2] S. J. Kang, Y. J. Song, Y. J. Yi, W. M. Choi, S. M. Yoon, and J. Y. Choi, “Work-function engineering of carbon nanotube transparent conductive films, Carbon, vol. 48, no. 2, pp. 520-524, 2010.
[3]D. A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, and R.E. Smalley, “Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett., vol. 74, no. 25, pp. 3803-3805, Jun. 21 1999.
[4]S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa, and Z. F. Ren, “Field emission of carbon nanotubes grown on carbon cloth, Appl. Phys. Lett., vol. 85, no. 5, pp. 810-812, 2004.
[5]M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, “Carbon Nanotubes: Synthesis, Structure, and Application, Mater. Sci. Eng., vol. 43, no. 3, pp. 61-102, 2004.
[6]S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes, Appl. Phys. Lett., vol. 84, no. 3, pp. 413-415 , 2004.
[7]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene, Nature, vol. 318, no. 6042, pp. 162-163, 1985.
[8]M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes, Carbon, vol. 33, pp. 883-891, 1995.
[9]X. E. E. Reynhout, “The Wondrous World of CarbonNanotubes, University of Technology; Eindhoven, The Netherlands, pp. 12-13, 2003.
[10]R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Physical Properties of Carbon Natotubes, Imperial College Press, London, 1998.
[11] P. R. Wallace, “The band theory of graphite, Phys. Rev., vol. 71, no. 9, pp. 622-634, 1947.
[12] H. Dai, “Carbon nanotubes: opportunities and challenges, Surface Science, vol. 500, no. 1-3, pp. 218-241, 2002.
[13] A. Oberlin, M. Endo, T. Koyama, “High resolution electron microscope observations of graphitized carbon fibers, Carbon, vol. 14, no. 2, pp. 133-135, 1976.
[14]A. Oberlin, M. Endo, T. Koyama, “Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth, vol. 32, no. 3, pp. 335-349, 1976.
[15]T. Baird, J. R. Fryer, B. Giant, “Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700°C, Carbon, vol. 12, no. 5, pp. 591-602, 1974.
[16]S. Chopra, A. Pham, J. Gaillard, A. Parker and A. M. Rao, “Carbon-nanotube-based resonant-circuit sensor for ammonia, Appl. Phys. Lett, vol. 80, no. 24, pp. 4632-4634, 2002.
[17]W. A. de Heer, A. Chatelain and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source, Science, vol. 270, no. 5239, pp. 1179-1180, 1995.
[18]S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nmdiameter, Nature, vol. 363, no. 6430, pp. 603-605, 1993.
[19]D. S. Bethune, C. H. Kiang, M.S. deVries, G. Gorman, R. saroy,J. Vazguez, and R. Beyers, “Cobalt-catalyzed growth of carbonnanotubes with single-atomic-layerwalls, Nature, vol. 605, no.6430, pp. 605-607, 1993.
[20] 蕭至宏,2007,場發射型奈米碳管氣體感測器之研究,雲林科技大學電子工程系研究所,碩士論文。[21] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol. 273, no. 5274, pp. 483-487, 1996.
[22]S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, “Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes, Phys. Rev. Lett., vol. 80, no. 17, pp. 3779-3782, 1998.
[23]M. Milnera, J. Ku¨rti, M. Hulman, and H. Kuzmany, “Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes, Phys. Rev. Lett., vol. 84, no. 6, pp. 1324-1327, 2000.
[24] S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski and J. Robertson, “Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition, J. Appl. Phys., vol. 94, no. 9, pp. 6005-6012, 2003.
[25] C. S. Huang, B. R. Huang, Y. H. Jang, M. S. Tsai and C. Y. Yeh, “Three-terminal CNT gas sensor for N-2 detection, Diamond Relat. Mater., vol. 14, no. 11, pp. 1872-1875, 2005.
[26] L.K. Randeniya, P.J. Martin, A. Bendavid, and J. McDonnell, “Ammonia sensing characteristics of carbon-nanotube yarns decorated with nanocrystalline gold, Carbon, vol. 49, no. 15, pp. 5265-5270, 2011.
[27] E.R. Leite, I.T. Weber, E. Longo and J.A. Varela, “A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications, Advanced Materials, vol. 12, no. 13, pp. 965-968, 2011.
[28] Z.L.Wang, “Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-From materials to nanodevices, Advanced Materials, vol. 15, no. 5, pp. 432-436, Mar. 4 2003.
[29] S. Srivastava, S. Kumar, V.N. Singh, M. Singh and Y.K. Vijay, “Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing, International Journal of Hydrogen Energy, vol. 36, no. 10, pp. 6343-6355, 2011.
[30] S.N. Das, J.P. Kar, J.H. Choi, T.I. Lee, K.J. Moon and J.M. Myoung, “Fabrication and characterization of ZnO single nanowire-based hydrogen sensor, Journal of Physical Chemistry C, vol. 114, no. 3, pp. 1689-1693, 2010.
[31] C.S. Rout, M. Hegde and C.N.R Rao, “H2S sensors based on tungsten oxide nanostructures, Sensors and Actuators B, vol. 128, no. 2, pp. 488-493, 2008.
[32]Safety (MSDS) data for 2-propanol. Oxford University.
[33]Fischer Scientific (MSDS) for Isopropyl Alcohol.
[34] J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dai, “Nanotube molecular wires as chemical sensors, Science, vol. 287, no. 5453 pp. 622-625, 2000.
[35] A. Modi, N. Koratkar, E. Lass, B. Wei and P.M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes, Nature, vol. 424, no. 6945, pp. 171-174, 2003.
[36] K. A. Joshi, M. Prouza, M. Kum, J. Wang, J. Tang, R. Haddon, W. Chen and A. Mulchandani, “V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode, Analytical Chemistry, vol. 78, no. 1, pp. 331-336, 2006.
[37] M. Penza, M, Alvisi. R. Rossi, E. Serra, R. Paolesse, A. D'Amico and C. Di Natale, “Carbon nanotube films as a platform to transduce molecular recognition events in metalloporphyrins, Nanotechnology, vol. 22, no. 12, pp. 125502, 2011.
[38] M. Penza, R. Rossi, M. Alvisi, G. Cassano and E. Serra, “Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications, Sens. Actuators B, vol. 140, no. 1, pp. 176-184, 2009.
[39] C. Emmenegger, J. M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zuttel and L. Schlapbach, “Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism, Carbon, vol. 41, no. 3, pp. 539-547, 2003.
[40] A. K. Das and C. R. Raj, “Iodide-Mediated Reduction of AuCl4- and a New Green Route for the Synthesis of Single Crystalline Au Nanostructures with Pronounced Electrocatalytic Activity, J. Phys. Chem. C, vol. 115, no. 43, pp. 21041-21046, 2011.
[41] M. N. Zhang, L. Su and L. Q. Mao, “Surfactant functionalization of carbon nanotubes (CNT) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid, Carbon, vol. 44, no. 2, pp. 276-283, 2006.
[42] E. H. Espinosa, R. Lonescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. J. Pireaux and E. Llobet, “Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing, Thin Solid Films, vol. 515, no. 23, pp. 8322-8327, 2007.
[43] J. Y. Miao, D. W. Hwang, K. V. Narasimhulu, P. I. Lin, Y. T. Chen, S. H. Lin and L. P. Hwang, “Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts, Carbon, vol. 42, no. 4, pp. 813-822, 2004.
[44] S. M. Cui, H. H. Pu, G. H. Lu, Z. H. Wen, E. C. Mattson, Hirschmugl C, M. Gajdardziska Josifovska, M. Weinert and J. Chen, “Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes, ACS Appl Mater Interfaces, vol. 4, no. 9, pp. 4898-4904, 2012.
[45] N. R. C. Raju, K. J. Kumar and A. J. Subrahmanyam, “Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth, J Phys D-Appl Phys, vol. 42, no. 13, pp. 135411, 2012.
[46]M. Batzill and U. Diebold, “The surface and materials science of tin oxide, Prog Surf Sci, vol. 79, no. 2-4, pp. 47-154, 2005.
[47]G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink and P. J. Kelly, “Doping graphene with metal contacts, Phys Rev Lett, vol. 101, no. 2, pp. 026803, 2008.
[48]F. Bartolucci, R, Franchy, J. C. Barnard, R. E. Palmer “Two Chemisorbed Species of O2 on Ag(110), Phys Rev Lett, vol. 80, no. 23, pp. 5224-5227, 1998.
[49]V. V. Petrov, T. N. Nazarova, A. Korolev and N. F. Kopilova, “Thin sol-gel SiO2-SnOx-AgOy films for low temperature ammonia gas sensor, Sens Actuators B, vol. 133, no. 1, pp. 291-295, 2008.
[50]N. Yamazoe, “New approaches for improving semiconductor gas, Sens Actuators B, vol. 5, no. 1-4, pp. 7-19, 1991.
[51]S. J. Chang, T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chan, C. L. Hsu, Y. R. Lin, B. R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption, IEEE transactions on nanotechnology, vol.7, no. 6, pp.754-759, 2008.
[52]D. Kohl, “The role of noble-metals in the chemistry of solid-state gas sensors, Sens. Actuators B, vol. 1, no. 1-6, pp. 158-165, 1990.
[53]O. K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey and C.A. Grimes, “Gas sensing characteristics of multi-wall carbon nanotubes, Sensors and Actuators B, vol.81, no. 1, pp.32-41, 2001.
[54]G. Stan, M. J. Bojan, S. Curtarolo, S. M. Gatica and M. W. Cole, “Uptake of gases in bundles of carbon nanotubes Uptake of gases in bundles of carbon nanotubes, Physical Review B, vol. 62, no. 3, pp. 2173-2180, 2000.
[55] K. Parikh, K. Cattanach, R. Rao, D. S. Suh, A. Wu and S.K. Manohar, “Flexible vapor sensors using single walled carbon nanotubes, Sens. Actuators B, vol. 113, no. 1, pp. 55-63, 2006.
[56]K. Mitsubayashi, Y. Wakabayashi, D. Murotomi, T. Yamada, T. Kawase, S. Iwagaki and I. Karube, “Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring, Sens. Actuators B, vol. 95, no. 1-3, pp. 373-377, 2003.
[57] J. J. Zhao, A Buldum, J. Han and J. P. Lu, “Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology, vol. 13, no. 2, pp. 195-200, Apr. 2002.
[58] B. R. Huang and T. C. Lin, “A novel technique to fabricate horizontally aligned CNT nanostructure film for hydrogen gas sensing, International Journal of Hydrogen Energy, vol. 36, vol. 24, pp. 15919-15926, 2011.
[59] D. R. Kauffman and A. Star, “Chemically induced potential barriers at the carbon nanotube metal nanoparticle interface, Nano Lett, vol. 7, vol. 7, pp. 1863-1868, 2007.
[60] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., vol. 75, no. 20, pp. 3129-3131 , 1999.
[61] C. A. Spindt, “A thin-film field-emission cathode, J. Appl. Phys., vol. 39, no. 7, pp. 3504-3505, 1968.
[62] R. H. Fowler, and L. W. Nordheim, “Electron Emission in Intense Electric fields, FieldsProc. R. Soc. London, Ser. A, vol. 119, no. 781, pp. 173-181, 1928.
[63] Y. Zhao, B. Zhang, N. Yao, G. Sun, and J. Li, “Improved field emission properties from metal-coated diamond films, Diamond Relat. Mater., vol. 16, no. 3, pp.650-653 , 2007.
[64] R. K. Fowler and L. W. Nordheim, “Electron emission in intense electric fields, Proc. Roy. Soc. (London), A, vol. 119 no. 781, pp. 173-181, 1928.
[65] E.W.Müller, “Electron microscopic observations of field cathodes, Z. Physik, vol. 106, no. 5, pp. 541-550, 1937.
[66] E. L. Murphy and R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region, Phys. Rev., vol. 102, no. 6, pp. 1464-1473, 1956.
[67] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, “Field-Emitter Arrays Applied to Vacuum Fluorescent Display, IEEE Trans. Electron Devices, vol. 36, no. 1, pp. 225-228, 1989.
[68] L. F. Chen, Y. H. Mi, H. L. Ni, Z. G. Ji, J. H. Xi, X. D. Pi, and H. F. Zhao, “Enhanced field emission from carbon nanotubes by electroplating of silver nanoparticles, J. Vac. Sci. Technol. B, vol 29, no. 4, pp. 041003-1-041003-4, 2011.
[69] S. Shrestha, W. C. Choi, W. Song, Y. T. Kwon,S. P. Shrestha, and C. Y. Park, “Preparation and field emission properties of Er-decorated multiwalled carbon nanotubes, Carbon, vol. 48, no. 1, pp. 54-59, 2010.
[70] Y. Wei, W. Wei, L. Liu, and S. S. Fan, “Mounting multi-walled carbon nanotubes on probes by dielectrophoresis, Diamond Relat. Materials, vol 17, no. 11, pp. 1877-1880, 2008.
[71] J. T. Li, W. D. Schneider, and R. Berndt, “Local density of states from spectroscopic scanning-tunneling-microscope images: Ag(111), Phys. Rev. B, vol. 56, no. 12, pp. 7656-7659, 1997.
[72] Y. H. Chen, C. T. Hu, and I. N. Lin, “Modification on the electron field emission properties of diamond films: The effect of bias voltage applied in situ, J. Appl. Phys. vol. 84, no. 7, pp. 3890-3894, 1998.
[73] A. Pandey, A. Prasad, J. P. Moscatello, M. Engelhard, C. M. Wang, and Y. K. Yap, “Very Stable Electron Field Emission from Strontium Titanate Coated Carbon Nanotube Matrices with Low Emission Thresholds, ACS Nano., vol 7, no. 1, pp. 117-125, 2013.
[74] G. Gruner, “Carbon nanotube films for transparent and plastic electronics, J. Mater. Chem. vol. 16, no. 35, pp. 3533-3539, 2006.
[75] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes, Phys. Rev. Lett. vol. 87, no. 21, pp. 215502, 2001.
[76] A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad and P. M. Ajayan, “Super-Compressible Foamlike Carbon Nanotube Films, Science, vol. 310, no. 5752, pp. 1307-1310, 2005.
[77] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley and R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes, Science, vol. 298, no. 5605, pp. 2361-2366, 2002.
[78] Q. Cao and J. A. Rogers, “Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects, Advanced Materials, vol. 21, no. 1, pp. 29-53, 2009.
[79] A. Star, T. R. Han, V. Joshi, J. C. P. Gabriel, and G. Grüner, “Nanoelectronic carbon dioxide sensors, Advanced Materials, vol. 16, no. 22, pp. 2049-2052, 2004.
[80] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu and T. L. Reinecke, “Chemical detection with a single-walled carbon nanotube capacitor, Science, vol. 307, no. 5717, pp. 1942-1945, 2005.
[81] M.E. Roberts, M.C. LeMieux, Z. Bao, “Sorted and Aligned Single-Walled Carbon Nanotube Networks for Transistor-Based Aqueous Chemical Sensors, ACS Nano, vol. 3, no. 10, pp. 3287-3293, 2009.
[82] H. Gu and T. M. Swager, “Fabrication of Free-standing, Conductive, and Transparent Carbon Nanotube Films Advanced Materials, vol. 20, no. 23, pp. 4433-4437, 2008.
[83] Z. D. Lin, C. H. Hsiao, S. J. Young, C. S. Huang, S. J. Chang and S. B. Wang, “Carbon Nanotubes With Adsorbed Au for Sensing Gas, IEEE Sensors Journal, vol. 188, no. 6, pp. 1230-1234, 2013.
[84] Z. D. Lin, S. J. Young, C. H. Hsiao, S. J. Chang and C. S. Huang, “ Improved Field Emission Properties of Ag-Decorated Multi-Walled Carbon Nanotubes, IEEE PHOTONIC. TECH. L., vol. 25, no. 11, pp. 1017-1019, 2013.
[85] Z. D. Lin, C. H. Hsiao, S. J. Chang and S. J. Young “Adsorption sensitivity of Ag-decorated carbon nanotubes towards gas-phase compounds, Sensors and actuators. B, Chemical., vol. 25, pp. 1017-1019, 2013.
[86] Z. D. Lin, S. J. Young and S. J. Chang, “ CO2 gas sensors based on Carbon nanotube thin films by using a Simple Transfer Method on flexible substrate, IEEE Sensors Journal, vol. 15, no. 12, pp. 7017-7020, 2015.
[87] Z. D. Lin, S. J. Young and S. J. Chang, “Carbon nanotube thin films functionalized via loading of Au nanoclusters for flexible gas sensors devices, IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 476-480, 2015.
[88] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett., Vol. 79, no. 8, pp.1172-1174, 2001.
[89] M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. W. Shan, C. Kittrell, R. H. Hauge, J. M. Tour and R. E. Smalley, “Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization, Science, vol. 301, no. 5639, pp. 1519-1522, 2003.
[90] C. M. Yang, K. H. An, J. S. Park, K. A. Park, S. C. Lim, S. H. Cho, Y. S. Lee, W. Park, C. Y. Park and Y. H. Lee, “Preferential Etching of Metallic Single-Walled Carbon Nanotubes with Small Diameter by Fluorine Gas, Phys. Rev. B, vol. 73, pp. 7, 2006.
[91] R. Krupke, F. Hennrich, H. V. Lohneysen and M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes, Science, vol. 301, no. 5631, pp. 344-347, 2003.
[92] S. Mesgari and Y. F. Poon, “High Selectivity cum Yield Gel Electrophoresis Separation of Single-Walled Carbon Nanotubes Using a Chemically Selective Polymer Dispersant, J. Phys. Chem. C, vol. 116, no. 18, pp. 10266-10273, 2012.
[93] H. Li, B. Zhou, L. Gu, W. Wang, K. A. S. Fernando, S. Kumar, L. F. Allard and Y. P. Sun, “Selective Interactions of Porphyrins with Semiconducting Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., vol. 126, no. 4, pp. 1014-1015, 2004.
[94] M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. McLean and G. B. Onoa, “Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly, Science, vol. 302, no. 5650, pp. 1545-1548, 2003.
[95] X. M. Tu, S. Manohar, A. Jagota and M. Zheng, “DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes, Nature, vol. 460, no. 7252, pp. 250-253, 2009.
[96] M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp and M. C. Hersam, “Sorting Carbon Nanotubes by Electronic Structure Using Density Differentiation, Nat. Nanotechnol., vol. 1, no. 1, pp. 60-65, 2006.
[97] A. Nish, J. Y. Hwang, J. Doig and R. J. Nicholas, “Highly Selective Dispersion of Single Walled Carbon Nanotubes Using Aromatic Polymers, Nat. Nanotechnol.,vol. 2, no. 10, pp. 640-646, 2007.
[98] W. H. Yi, A. Malkovskiy, Q. H. Chu, A. P. Sokolov, M. L. Colon, M. Meador and Y. Pang, “Wrapping of Single-Walled Carbon Nanotubes by a π-Conjugated Polymer: The Role of Polymer Conformation-Controlled Size Selectivity, J. Phys. Chem. B, vol. 112, no. 39, pp. 12263-12269, 2008.
[99] L. Zhengtang, D. P. Lisa , L. H. Gary, and P. Fotios, “(n,m) Abundance Evaluation of Single-Walled Carbon Nanotubes by Fluorescence and Absorption Spectroscopy, J. Am. Chem. Soc., vol. 128, no. 48, pp 15511-15516, 2006.
[100] S. Reich, C. Thomsen and Robertson, “Exciton resonances quench the photoluminescence of zigzag carbon nanotubes, J. Phys. ReV. Lett., vol. 95, no. 7, pp. 077402/1-077402/4, 2005.
[101] Y. Oyama, R. Saito, K. Sato, J. Jiang, G. G. Samsonidze, A. Grueneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes, Carbon, vol. 44, no. 5, pp. 873-879, 2006.
[102] S. Park, H. W. Lee, H. Wang, S. Selvarasah, M. R. Dokmeci, Y. J. Park, S. N. Cha, J. M. Kim, and Z. Bao, “Highly Effective Separation of Semiconducting Carbon Nanotubes verified via Short-Channel Devices Fabricated Using Dip-Pen Nanolithography, ACS Nano, vol. 6, no. 3, pp. 2487-2496, 2012.
[103] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett., vol. 73, no. 17, pp. 2447-2449, 1998.
[104] M.H. Andrew Ng, L.T. Hartadi, H. Tan, C.H. Patrick, “Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates, Nanotechnology, vol. 19, no. 20, pp. 205703, 2008.
[105] H. W. Lee, Y. Yoon, S. Park, J. H. Oh, S. Hong, L. S. Liyanage, P. H. S. Wong, J. B. H. Tok, J. M. Kim and Z. Bao, “Selective Dispersion of High Purity Semiconducting Single- Walled Carbon Nanotubes with Regioregular Poly (3-alkylthiophene)s., Nat. Commun., vol. 2, pp. 541, 2011.
[106] Z. Luo, L. D. Pfefferle, G. L. Haller and F. Papadimitrakopoulos, “(n,m) Abundance Evaluation of Single-Walled Carbon Nanotubes by Fluorescence and Absorption Spectroscopy, J. Am. Chem. Soc., vol. 128, no. 48, pp. 15511-15516, 2006.
[107] M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour and R. E. Smalley, “Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization, Science, vol. 301, no. 5639, pp. 1519-1522, 2003.
[108] A. Jorio, R. Saito and J. H. Hafner, “Structural ( n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering, Phys. Rev. Lett., vol. 86, no. 6, pp. 1118-1121, 2001.
[109] A. Jorio, A. G. Souza Filho and G. Dresselhaus, “G-band resonant Raman study of 62 isolated single-wall carbon nanotubes, Phys. Rev. B: Condens. Matter Mater. Phys., vol. 65, no. 15, pp. 155412, 2002.
[110] C. Wang, L. Qian; W. Xu, S. Nie, W. Gu, J. Zhang, J. Zhao, J. Lin, Z. Chen, Z. Cui, “ High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes, Nanoscale, vol. 5, no. 10, pp. 4156-4161, 2013.
[111] S. J. Kang, C. Kocabas, T. Ozel, M. S. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin and J. A. Rogers, “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nat. Nanotechnol., vol. 2, no. 4, pp. 230-236, 2007.
[112] F. Sajed and C. Rutherglen, “All-printed and transparent single walled carbon nanotube thin film transistor devices, Appl. Phys. Lett., vol. 103, no. 14, pp. 143303, 2013.