跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張瑞純
研究生(外文):Jui-Chun Chang
論文名稱:DDA3對微小管穩定性與功能的探討
論文名稱(外文):Studies of DDA3 on microtubule stability and function
指導教授:陳芬芳陳芬芳引用關係
指導教授(外文):Fung-Fang Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:91
中文關鍵詞:DDA3微小管聚集成束微小管後轉譯修飾微小管結合蛋白神經突起之生成過程EB3
外文關鍵詞:DDA3microtubule bundlingmicrotubule posttranslational modificationmicrotubule associated proteinneuritogenesisEB3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是想要探討DDA3對microtubule dynamics的調控以及如何影響與microtubule有關的功能。DDA3是本實驗室發現的一個p53的轉譯標地(transcriptional target),DDA3在細胞中的分布情形與microtubule重疊,且能夠與microtubule plus end binding protein EB3結合。藉由螢光免疫染色分析和GST pull-down assay,定出在DDA3蛋白序列上與microtubule和EB3 的結合區域皆是amino acids 118-329。在細胞中表現DDA3能夠引起microtubule聚集成束(bundling),這些成束的microtubule具有nocodazole抗性,並且發生acetylation。另外以in vitro MT bundling assay,在電子顯微鏡的觀察下,發現DDA3蛋白能夠直接使microtubule成束並使之穩定。DDA3在腦部有特異性表現,且此表現與p53無關。為了更進一步探討DDA3是否參與神經細胞的分化,以PC12 pheochromocytoma和N2a neuroblastoma的細胞來探討DDA3在神經突起(neurite)生成過程中可能扮演的角色。在NGF誘導PC12分化的過程中,表現DDA3能夠抑制neurite的生成,相反的,在N2a細胞中抑制DDA3的表現又會促進neurite的生成。與上述結果一致的是,利用retinoic acid誘使N2a細胞分化的過程中,細胞中DDA3的表現量也是逐漸下降的。與DDA3相反,在N2a細胞中抑制DDA3結合蛋白EB3的表現時,在Retinoid acid誘導下,細胞無法生成neurite。總結以上結果,DDA3能夠調控microtubule dynamics,並且在neuritogenesis過程中扮演一個新穎性的角色。
The aim of this study is to investigate the effects of DDA3 on microtubule (MT) dynamics and functions. DDA3 is a p53 transcriptional target shown to be colocalized with MT in cells and bind MT plus end binding protein EB3. By immunofluorescence analysis and GST pull-down assay, we have mapped the MT and EB3 binding domains of DDA3. Both of them are amino acids 118-329. Ectopic expression of DDA3 in cells induced nocodazole-resistant MT bundles characterized by acetylation; in vitro MT bundling assay followed by electron microscopy analysis demonstrated that DDA3 directly bundles and stabilizes MT. DDA3 is expressed in the brain in a p53-independent manner. To examine if DDA3 is involved in MT-mediated activities, we explored the role of DDA3 in neurite formation using PC12 pheochromocytoma and N2a neuroblastoma cells. Overexpression of DDA3 inhibited neurite formation during NGF-induced PC12 differentiation, in contrast, knockdown of DDA3 expression by small interference RNA resulted in neurite outgrowth in N2a cells. Consistent with these findings, DDA3 expression was down-regulated during retinoic acid induced N2a differentiation. Interestingly, blocking the expression of EB3 suppressed the neurite outgrowth during induced differentiation of N2a cells. Together this study uncovers a novel role of DDA3 in MT dynamics and MT-mediated functions such as neurite formation.
Abstract…………………………………………………….1
摘要………………………………………………………….2
序論………………………………………………………….3
研究動機……………………………………………………23
實驗材料與方法……………………………………………24
實驗結果……………………………………………………33
實驗討論……………………………………………………41
參考資料……………………………………………………50
附圖…………………………………………………………58
附錄一………………………………………………………75
附錄二………………………………………………………84
1. Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979, 278:261-3.
2. Linzer, D. I. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor
antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979, 17:43-52.
3. Prives, C. Signaling to p53: breaking the MDM2-p53 circuit. Cell 1998, 95:5-8.
4. Oren, M. Decision making by p53: life, death and cancer. Cell Death. Differ. 2003, 10:431-42.
5. Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1994, 22:3551-5.
6. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 1997, 88:323-31.
7. Vousden, K. H. p53: death star. Cell 2000, 103:691-4.
8. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 2000, 408:307-10.
9. Tang, P. P. & Wang, F. F. Induction of IW32 erythroleukemia cell differentiation by p53 is dependent on protein tyrosine phosphatase. Leukemia 2000, 14:1292-300.
10. Lo, P. K. et al. Identification of a novel mouse p53 target gene DDA3. Oncogene 1999, 18:7765-74.
11. Hsieh, S. C., Lo, P. K. & Wang, F. F. Mouse DDA3 gene is a direct transcriptional target of p53 and p73. Oncogene 2002, 21:3050-7.
12. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 1997, 13:83-117.
13. Amos, L. A. & Schlieper, D. Microtubules and maps. Adv. Protein Chem. 2005, 71:257-98.
14. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 1986, 45:329-42.
15. Mimori-Kiyosue, Y. & Tsukita, S. "Search-and-capture" of microtubules through plus-end-binding proteins (+TIPs). J. Biochem. (Tokyo) 2003, 134:321-6.
16. Schuyler, S. C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci. 2001, 114:247-55.
17. Gundersen, G. G. Evolutionary conservation of microtubule-capture mechanisms. Nat. Rev. Mol. Cell Biol. 2002, 3:296-304.
18. Schuyler, S. C. & Pellman, D. Microtubule "plus-end-tracking proteins": The end is just the beginning. Cell 2001, 105:421-4.
19. Galjart, N. & Perez, F. A plus-end raft to control microtubule dynamics and function. Curr. Opin. Cell Biol. 2003, 15:48-53.
20. Carvalho, P., Tirnauer, J. S. & Pellman, D. Surfing on microtubule ends. Trends Cell Biol. 2003, 13:229-37.
21. Khodjakov, A., Copenagle, L., Gordon, M. B., Compton, D. A. & Kapoor, T. M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 2003, 160:671-83.
22. Maiato, H., Rieder, C. L. & Khodjakov, A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 2004, 167:831-40.
23. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 2004, 265:23-32.
24. Watanabe, T., Noritake, J. & Kaibuchi, K. Regulation of microtubules in cell migration. Trends Cell Biol. 2005, 15:76-83.
25. Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. & Gundersen, G. G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 2004, 303:836-9.
26. Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A. & Hall, A. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J. Biol. Chem. 2001, 276:1677-80.
27. Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J. Biol. Chem. 2004, 279:6196-203.
28. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 2003, 421:753-6.
29. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 2001, 106:489-98.
30. Ezratty, E. J., Partridge, M. A. & Gundersen, G. G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat. Cell Biol. 2005, 7:581-90.
31. Gundersen, G. G. & Bulinski, J. C. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl. Acad. Sci. U. S. A. 1988, 85:5946-50.
32. Gundersen, G. G., Khawaja, S. & Bulinski, J. C. Generation of a stable, posttranslationally modified microtubule array is an early event in myogenic differentiation. J. Cell Biol. 1989, 109:2275-88.
33. Gundersen, G. G. & Bulinski, J. C. Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin. Eur. J. Cell Biol. 1986, 42:288-94.
34. Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 1998, 273:9797-803.
35. Lin, S. X., Gundersen, G. G. & Maxfield, F. R. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol. Biol. Cell 2002, 13:96-109.
36. Cook, T. A., Nagasaki, T. & Gundersen, G. G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 1998, 141:175-85.
37. Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 2001, 3:723-9.
38. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat. Cell Biol. 2004, 6:820-30.
39. Bulinski, J. C. & Gundersen, G. G. Stabilization of post-translational modification of microtubules during cellular morphogenesis. Bioessays 1991, 13:285-93.
40. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002, 417:455-8.
41. Matsuyama, A. et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. Embo J. 2002, 21:6820-31.
42. Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. Embo J. 2003, 22:1168-79.
43. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 2003, 11:437-44.
44. Kozminski, K. G., Diener, D. R. & Rosenbaum, J. L. High level expression of nonacetylatable alpha-tubulin in Chlamydomonas reinhardtii. Cell Motil. Cytoskeleton 1993, 25:158-70.
45. Gaertig, J. et al. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila. J. Cell Biol. 1995, 129:1301-10.
46. Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:4389-94.
47. Palazzo, A., Ackerman, B. & Gundersen, G. G. Cell biology: Tubulin acetylation and cell motility. Nature 2003, 421:230.
48. Hanson, C. A. & Miller, J. R. Non-traditional roles for the Adenomatous Polyposis Coli (APC) tumor suppressor protein. Gene. 2005, 361:1-12.
49. Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer 2001, 1:55-67.
50. Morrison, E. E., Wardleworth, B. N., Askham, J. M., Markham, A. F. & Meredith, D. M. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 1998, 17:3471-7.
51. Nakamura, M., Zhou, X. Z. & Lu, K. P. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr. Biol. 2001, 11:1062-7.
52. Lustig, B. & Behrens, J. The Wnt signaling pathway and its role in tumor development. J. Cancer Res. Clin. Oncol. 2003, 129:199-221.
53. Korinek, V. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997, 275:1784-7.
54. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 1998, 281:1509-12.
55. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999, 398:422-6.
56. Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 1996, 134:165-79.
57. Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr. Biol. 2001, 11:44-9.
58. Su, L. K. et al. APC binds to the novel protein EB1. Cancer Res. 1995, 55:2972-7.
59. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat. Cell Biol. 2001, 3:433-8.
60. Kaplan, K. B. et al. A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat. Cell Biol. 2001, 3:429-32.
61. Green, R. A. & Kaplan, K. B. Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J. Cell Biol. 2003, 163:949-61.
62. Dikovskaya, D., Newton, I. P. & Nathke, I. S. The adenomatous polyposis coli protein is required for the formation of robust spindles formed in CSF Xenopus extracts. Mol. Biol. Cell 2004, 15:2978-91.
63. Brakeman, J. S., Gu, S. H., Wang, X. B., Dolin, G. & Baraban, J. M. Neuronal localization of the Adenomatous polyposis coli tumor suppressor protein. Neuroscience 1999, 91:661-72.
64. Yamanaka, H. et al. Expression of Apc2 during mouse development. Brain Res. Gene Expr. Patterns 2002, 1:107-14.
65. Dobashi, Y., Bhattacharjee, R. N., Toyoshima, K. & Akiyama, T. Upregulation of the APC gene product during neuronal differentiation of rat pheochromocytoma PC12 cells. Biochem. Biophys. Res. Commun. 1996, 224:479-83.
66. Zhou, F. Q., Zhou, J., Dedhar, S., Wu, Y. H. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 2004, 42:897-912.
67. Temburni, M. K., Rosenberg, M. M., Pathak, N., McConnell, R. & Jacob, M. H. Neuronal nicotinic synapse assembly requires the adenomatous polyposis coli tumor suppressor protein. J. Neurosci. 2004, 24:6776-84.
68. Parker, M. J., Zhao, S., Bredt, D. S., Sanes, J. R. & Feng, G. PSD93 regulates synaptic stability at neuronal cholinergic synapses. J. Neurosci. 2004, 24:378-88.
69. Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991, 253:665-9.
70. Nakagawa, H. et al. Identification of a brain-specific APC homologue, APCL, and its interaction with beta-catenin. Cancer Res. 1998, 58:5176-81.
71. van Es, J. H. et al. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Curr. Biol. 1999, 9:105-8.
72. Nakagawa, H. et al. EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue. Oncogene 2000, 19:210-6.
73. Schwartz, K., Richards, K. & Botstein, D. BIM1 encodes a microtubule-binding protein in yeast. Mol. Biol. Cell 1997, 8:2677-91.
74. Beinhauer, J. D., Hagan, I. M., Hegemann, J. H. & Fleig, U. Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J. Cell Biol. 1997, 139:717-28.
75. Berrueta, L., Tirnauer, J. S., Schuyler, S. C., Pellman, D. & Bierer, B. E. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol. 1999, 9:425-8.
76. Askham, J. M., Vaughan, K. T., Goodson, H. V. & Morrison, E. E. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell. 2002, 13:3627-45.
77. Ligon, L. A., Shelly, S. S., Tokito, M. & Holzbaur, E. L. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol. Biol. Cell. 2003, 14:1405-17.
78. Karki, S. & Holzbaur, E. L. Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem. 1995, 270:28806-11.
79. Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 1995, 131:1507-16.
80. Vaughan, K. T., Tynan, S. H., Faulkner, N. E., Echeverri, C. J. & Vallee, R. B. Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. J. Cell Sci. 1999, 112:1437-47.
81. Hayashi, I. & Ikura, M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem. 2003, 278:36430-4.
82. Bu, W. & Su, L. K. Characterization of functional domains of human EB1 family proteins. J. Biol. Chem. 2003, 278:49721-31.
83. Berrueta, L. et al. The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:10596-601.
84. Tirnauer, J. S., O'Toole, E., Berrueta, L., Bierer, B. E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 1999, 145:993-1007.
85. Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 2000, 149:863-74.
86. Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 2000, 287:2257-9.
87. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 2000, 287:2260-2.
88. Miller, R. K., Cheng, S. C. & Rose, M. D. Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol. Biol. Cell 2000, 11:2949-59.
89. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 2002, 158:873-84.
90. Lu, B., Roegiers, F., Jan, L. Y. & Jan, Y. N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 2001, 409:522-5.
91. Bu, W. & Su, L. K. Regulation of microtubule assembly by human EB1 family proteins. Oncogene 2001, 20:3185-92.
92. Juwana, J. P. et al. EB/RP gene family encodes tubulin binding proteins. Int. J. Cancer. 1999, 81:275-84.
93. Diamantopoulos, G. S. et al. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J. Cell Biol. 1999, 144:99-112.
94. Tirnauer, J. S. & Bierer, B. E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol. 2000, 149:761-6.
95. Askham, J. M., Moncur, P., Markham, A. F. & Morrison, E. E. Regulation and function of the interaction between the APC tumour suppressor protein and EB1. Oncogene 2000, 19:1950-8.
96. Munemitsu, S. et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 1994, 54:3676-81.
97. Smits, R. et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 1999, 13:1309-21.
98. Trzepacz, C., Lowy, A. M., Kordich, J. J. & Groden, J. Phosphorylation of the tumor suppressor adenomatous polyposis coli (APC) by the cyclin-dependent kinase p34. J. Biol. Chem. 1997, 272:21681-4.
99. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 1999, 11:45-53.
100. Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & De, M., Jr. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol. 1998, 8:541-4.
101. Skop, A. R. & White, J. G. The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr. Biol. 1998, 8:1110-6.
102. Baas, P. W. & Luo, L. Signaling at the growth cone: the scientific progeny of Cajal meet in Madrid. Neuron 2001, 32:981-4.
103. Mueller, B. K. Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci. 1999, 22:351-88.
104. Dent, E. W. & Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 2003, 40:209-27.
105. Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 1988, 8:1454-68.
106. Dehmelt, L. & Halpain, S. Actin and microtubules in neurite initiation: are MAPs the missing link? J. Neurobiol. 2004, 58:18-33.
107. Goldberg, D. J. & Burmeister, D. W. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J. Cell Biol. 1986, 103:1921-31.
108. Stepanova, T. et al. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J. Neurosci. 2003, 23:2655-64.
109. Guertin, D. A., Trautmann, S. & McCollum, D. Cytokinesis in eukaryotes. Microbiol. Mol. Biol. Rev. 2002, 66:155-78.
110. Mollinari, C. et al. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J. Cell Biol. 2002, 157:1175-86.
111. Cho, H. P. et al. The dual-specificity phosphatase CDC14B bundles and stabilizes microtubules. Mol. Cell Biol. 2005, 25:4541-51.
112. Maresca, T. J., Niederstrasser, H., Weis, K. & Heald, R. Xnf7 contributes to spindle integrity through its microtubule-bundling activity. Curr. Biol. 2005, 15:1755-61.
113. Cooke, C. A., Heck, M. M. & Earnshaw, W. C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol. 1987, 105:2053-67.
114. Bischoff, J. R. & Plowman, G. D. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 1999, 9:454-9.
115. Silke, J. & Vaux, D. L. Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis. J. Cell Sci. 2001, 114:1821-7.
116. Rodriguez Fernandez, J. L., Geiger, B., Salomon, D. & Ben-Ze'ev, A. Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. J. Cell Biol. 1993, 122:1285-94.
117. Medrano, S. & Scrable, H. Maintaining appearances--the role of p53 in adult neurogenesis. Biochem. Biophys. Res. Commun. 2005, 331:828-33.
118. van Lookeren, C. M. & Gill, R. Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. J. Comp Neurol. 1998, 397:181-98.
119. Jacobs, W. B., Walsh, G. S. & Miller, F. D. Neuronal survival and p73/p63/p53: a family affair. Neuroscientist. 2004, 10:443-55.
120. Culmsee, C. & Mattson, M. P. p53 in neuronal apoptosis. Biochem. Biophys. Res. Commun. 2005, 331:761-77.
121. Reichel, M. B. et al. High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice. Cell Death. Differ. 1998, 5:156-62.
122. Eizenberg, O. et al. p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol. Cell Biol. 1996, 16:5178-85.
123. S.Westermann, K.Weber, Post-translational modifications regulate microtubule function. Nat.Rev.Mol.Cell Biol. 2003, 4:938-47.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top