跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李明哲
研究生(外文):Ming-Jhe Li
論文名稱:改變歧管噴射角度及噴射油壓對噴霧特性暨引擎性能之影響
論文名稱(外文):The Influence of Modification of the Port Fuel Injection Angle and the Injection Pressure on the Spray Characteristics and the Engine Performance.
指導教授:施國亮施國亮引用關係
指導教授(外文):Kuo-Liang Shih
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:111
中文關鍵詞:高速閃光擷取技術噴霧燃燒SMD噴油嘴電子燃油噴射
外文關鍵詞:high speed flash-assisted images taking technoloSMDElectronic Fuel InjectionNozzleSpray Combustion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:529
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究內容針對光陽SJ25BA 125c.c.四行程單缸氣冷式電子噴射引擎來做噴霧系統觀測,利用高速閃光照相擷取技術來觀察噴嘴在進氣歧管時噴射的情況量測出噴霧之速度、貫穿距、噴霧角、油滴粒徑等,並製作兩種不同噴嘴安裝角度之歧管來改變噴嘴油滴撞擊位置,以改變噴射油壓後安裝於自製2-D汽缸頭進氣道及實驗引擎載具上,觀察噴霧行為撞擊及引擎性能及排污影響分析比對。

本論文在噴霧觀察的研究結果中可知噴射油柱是以螺旋形的方式噴出,後來螺旋的油柱開始破裂時油柱角度開始變小,且同時螺旋旁邊的油滴也開始分裂成小油滴,噴射速度是以正弦波漸緩的形式表現。上升10度撞擊於汽門導桿末端,油滴沿著汽門桿破裂成更小的油滴;下降5度撞擊於汽門傘上,油滴部分反彈至上方的歧管壁上形成液態薄膜。引擎測試部份乃是經由噴油嘴在開放空間時的噴霧特性來做基礎行為觀察分析,了解噴嘴霧化特性後再以不同的歧管角度及油壓作混合交叉噴霧行為觀察,最後將上述參數實現在實驗引擎載具上,控制引擎在不同轉速下,不同油壓及油滴撞擊位置,以及固定節汽門開度及當量比等參數,對實驗引擎性能輸出及排污影響比較,最後參考噴霧觀察結果做比對分析與討論。

從實驗結果中可以看到當噴射油壓越高時NO降低、CO些微上升,原始角度若提高噴射油壓引擎扭力則可些微提升,並能省油2%。若噴射油壓提高且改變噴射角度時,引擎扭力也隨之增高約16.77%,油耗可降低13.66%。
This study is performed on a KYMCO SJ25BA 125c.c. 4-strokes air-cooled EFI engine. The spray phenomena inside the intake manifold are acquired by using high speed flash-assisted images taking technology. The spray velocity, penetration, spray angle, and the spray droplet diameter are measured. Two spray angle nozzle adaptor and two spray fuel injection pressure are performed on a handmade 2-D intake manifold channel and the real engine to study these parameters on the engine performance and the exhaust emissions.

The study shows the fuel spray has a helical liquid jet pattern. The helical liquid jet then breakup into smaller jet and the droplets near the liquid jet also breakup into smaller ones. The spray velocity appears as a decaying helical shape. By increasing the spray angle 10o the spray impinged on the intake valve stem and breaks up into smaller droplets. By decreasing the spray angle 5o the spray impinged on the intake valve skirt and left wetted fuel film on the intake manifold wall. The spray is carried on in a open space to observe its characteristics. The engine is then controlled under various engine speeds, various injection pressures, and various spray angles with fixed engine throttle position and air fuel ratio. The engine performance and the exhaust emissions are then compared to the spray atomization analysis to interpolate these results.

Results show that if the injection pressure is increased the NO is reduced and the CO is increased. The engine torque is increased and fuel consumption is saved by 2% if the spray angle is increased. If the fuel injection pressure is also increased the engine torque can be promoted by 16.77% and the fuel consumption rate is saved by 13.66%.
中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
符號說明

第一章 緒論
1-1 前言

第二章 研究動機與背景
2-1 研究動機
2-2 文獻回顧
2-3 汽油引擎廢氣污染物生成之機制
2-4 研究目的

第三章 實驗設備與量測方法
3-1 噴霧觀測系統及影像擷取設備
3-1-1電子控制噴油嘴
3-1-2雷射繞射粒徑分析儀
3-1-3單眼數位相機
3-1-4高速攝影機
3-1-5閃頻儀
3-1-6開放空間噴油嘴噴霧觀測平台
3-1-7油壓建立及調整系統
3-1-8汽缸頭2-D平面進氣岐道噴霧觀測
3-1-9噴霧觀察實驗室整體配置圖
3-2 引擎實驗設備之建立及量測方法
3-1-1實驗引擎的動力性能量測與控制設備
3-2-2實驗引擎廢氣分析設備
3-2-3電子噴射系統之組成
3-2-4 實驗引擎人機介面監控與電子噴射圖控系統
3-3 實驗步驟與研究方法
3-3-1 噴油嘴在開放空間及2-D汽缸頭進氣道模型的噴霧觀測實驗規劃
3-3-2 改變噴油嘴撞擊位置角度之引擎測試

第四章 結果與討論
4-1 開放空間時噴油嘴特性及油滴撞擊平板之噴霧觀測
4-1-1 噴油嘴動態流量曲線
4-1-2 噴霧在不同距離之SMD量測
4-1-3 噴射油壓對噴霧之影響
4-2 改變噴射嘴撞擊位置及油壓之噴霧行為觀測
4-3 改變噴油嘴撞擊位置角度及油壓對引擎性能與排污之影響量測
4-3-1不同油壓在不同噴射角度對引擎排污之比較
4-3-2不同油壓在不同噴射角度對引擎性能之比較

第五章 結論與未來展望
5-1 結論
5-2 建議與未來展望

參考文獻

自傳
[1] 經濟部能源局-油價資訊管理與分析系統http://www.moeaboe.gov.tw/oil102/
[2] I. Gorille, N. Rittmannsberger, P.Werner, 1975, “Bosch Electronic Fuel Injection with Closed Loop Control,” SAE paper 750368, SAE Trans., vol. 84.
[3] J. Camp, T. Rachel, 1975, “Closed-Loop Electronic Fuel and Air Control of Internal Combustion Engines,” SAE paper 750369.
[4] R.E. Seiter, R.J. Clark, 1978, “Ford Three-Way Catalyst and Feedback Fuel Control System,” SAE paper 780203, SAE Trans., vol. 87.
[5] O. Glockler, H. Knapp, H. Manger, 1980, “Present Status and Future Development of Gasoline Fuel Injection Systems for Passenger Cars,” SAE paper 800467.
[6] L.L Bowler., 1980, “Throttle Body Fuel Injection (TBI)-An Integrated Engine Control System,” SAE paper 800164, SAE Trans., vol. 89.
[7] A. Jawad Badih, V. Kuzak Thomas, 2000, “Motorcycle Electronic Fuel Injection Retrofit,” SAE paper NO.2000-01-2914.
[8] R. Griffin Joseph, J. Ferguson Todd, 2001, “Calculated A/F Ratio via Exhaust Temperature Measure for Small Engine Control,” SAE Technical paper NO.2001-01-1339.
[9] M.Gartner Paul, 1999, “Development of a Low-Cost Fuel Injection System for use on Small Engines,” SAE paper NO.1999-01-3292.
[10] Almkvist Goran, Karlsson Tomas, Gren Styrbojorn, Andersson Conny, Oskarsson Peter, 2001, “Fuel Injection System for a High Speed One Cylinder S.I. Engine,” SAE paper NO.2001 01 1863/4284.
[11] Li, J. ,Collings, N., 1999, “A Semi-Empirical Model of Fuel Transport in Intake Manifolds of SI Engines and Its Application in Transient Conditions,” SAE 1999-01-1314.
[12] Shayler, P.J., Colechin, M.J.F., Scarisbrick, A., 1996, “Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine,” SAE 960273.
[13] Shayler, P.J., Colechin, M.J.F., Scarisbrick, A., 1996, “Fuel Film Evaporationand Heat Transfer in the Intake Port of a SI Engine,” SAE 961120.
[14]Hanriot, S.M., de Medeiros, M.A.F., Sodre, J.R., Valle, R.M., 2000,“An Experimental and Numerical Study from Pulsating Flow in Intake Manifold,” SAE 2000-01-3162.

[15] Hardalupas, Y., Taylor, A.M.K.P., and Wilkins, J.H., 1999, “Experimental Investigation of Sub-millimeter Droplet Impingement onto Spherical Surfaces,” International Journal of Heat and Fluid Flow, Vol.20, pp. 477-485.
[16 Mohammadi, A., Kidoguchi, Y., and Miwa, K., 2002, “Effect of Injection Parameters and Wall-Impingement on Atomization and Gas Entrainment Processes in Diesel Sprays,” SAE 2002-01-0497.
[17] Park, J., Xie, X., Kim, H., and Lai, M.C., 2001, “Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray,” SAE 2001-01-2023.
[18] Humberto , C., Kubitzek, A.M.,and Frank , O.,1999, “Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls,” Int. J. Heat and Fluid Flow, 20 (1999) 470-476.
[19] Stanglmaier, R.H., Roberts, C.E., and Moses, C.A., 2002, “Vaporization of Individual Fuel Drops on a Heated Surface: A Study of Fuel-Wall Interactions within Direct-Injected Gasoline (DIG) Engines,” SAE 2002-01-0838.
[20] A.G. Pautsch and T.A. Shedd, 2005,“Spray impingement cooling with single- and multiple-nozzle arrays,” University of Wisconsin-Madison, MFVAL, 1500 Engineering Drive, Madison, WI 53706-1609, USA Received 1 January 2005; revised 3 February 2005. Available online, 20, April 2005.
[21] Takaaki Sato, Yoshihiro Nakase, Yukihiro Takahashi, Masato Kubota,2006, “Liquid Film Behavior of PFI Spray Impinging on a Flat Wall,” Paper ID: ICLASS06-255 Aug.27-Sept.1, 2006, Kyoto, Japan.
[22] Marwan AI-Roub and Patrick V. Farrell, 1996, “Near Wall Interaction in Spray Impingement,” SAE 960863.
[23] Rioboo, R., C. Tropea, and M. Marengo, 2001,“Outcomes from a Drop Impact on Solid Surfaces. Atomization and Sprays , ” Vol.11, No. 2, pp. 155-165, 2001.
[24] Cossali , G.E., M. Marengo, and M.Santini. ,2003, “Multiple Drop Impact on Heated Surface.9th International Conference on Liquid Atomization and Spray Systems” (ICLASS), Sorrento, Italy,2003.
[25] Estes, K.A.,and Mudawar, I.,1995, “Correlation of saunter mean diameter and critical heat flux for spray cooling of small surfaces,” Int. J. Heat and Mass Transfer, 38 (1995) 2985-2996
[26] Burger, M., Schmehl, R., Gorse, P., Dullenkopf, K., Schafer, O., Koch, R., and Wittig, S., 2002, “Predictions of Transient Fuel Spray Phenomena in the Intake Port of a SI Engine,” SAE 2002-01-2695.
[27] Kazuhiko Kawajiri, Takashi Yonezawa, Hirofumi Ohuchi, Mamoru Sumida and Hideaki Katashiba, 2002, “Study of Interaction Between Spray and Air Motion, and Spray Wall Impingement,” SAE 2002-01-0836.
[28] W Donald. Stanton and J Christopher. Rutland, 1998, “Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays,” SAE 980132.
[29] Jiro Senda, Tomoyuki Kanda, Marwan AI-Roub, Patrick V. Farrell, Takashi Fukami and Hajime Fujimoto, 1997, “Modeling Spray Impingement Considering Fuel Film Formation on the Wall,” SAE 970047.
[30] Jiro Senda and Hajime Fujimoto, 2001, “Multi component Fuel Consideration for Spray Evaporation Field and Spray-Wall Interaction,” SAE 2001-01-1071.
[31]Manshik Kim, Hoon Cho,Youngman Cho and Kyoungdoug Min, 2003, “Computation and Optical Investigation of Liquid Fuel Film on the Cylinder Wall of an SI Engine,” SAE 2003-01-1113.
[32]Chengxin Bai and A. D. Gosman, 1995, “Development of Methodology for Spray Impingement Simulation,” SAE 950283.
[33]Chang you Chen, Duane R. Amlee, Richard J. R. Johns and Yangbing Zeng, 2004, “Detailed Modeling of Liquid Fuel Sprays in One-Dimensional Gas Flow Simulation,” SAE 2004-01-3000.
[34]Ronny Lindgren and Ingemar Denbratt , Chalmers University of Technology ,Sweden,SAE Technical Paper Series , No.013003,2004.
[35] Ren, W.M., Sayar, H., 2001, “Influence of Nozzle Geometry on Spray Atomization and Shape for Port Fuel Injector,” SAE 2001-01-0608.
[36] Han, J.S., Lu, P.H., Xie, X.B., Lai, M.C., Henein, N.A., 2002, “Investigation of Diesel Spray Primary Break-Up and Development for Different Nozzle Geometries,” SAE 2002-01-2775.
[37] Morgan, R., Wray, J., Kennaird, D.A., Crua, C., Heikal, M.R., 2001,“Then Fluency of Injector Parameters on the Formation and Break-Up of a Diesel Spray,” SAE 2001-01-0529.
[38] Kenji Amagai, Yasuhiro Maruyama, Masahiro Saito, and Masataka Arai, 2003, “Spray-to-Spray interaction after wall impingement,” SAE 2003-01-1835.
[39] Bergstrand, P., Persson, F., Forsth, M., Denbratt I., 2003, “A Study of the Influence of Nozzle Orifice Geometries on Fuel Evaporation Using Laser-Induced Exciplex Fluorescence, ” SAE 2003-01-1836.
[40] Ronny Lindgren and Ingemar Denbratt,2004, “Influence of Wall Properties on the Characteristics of a Gasoline Spray After Wall Impingement,” SAE 2004-01-1951.
[41]Tian Chun-xia, Qiu Xing-qi, Cui Yun-jing, 2005,“Development of Technology on Atomization.,” 工業加熱,第34卷, 2005年, 第4季.

[42] Harvie, D.J.E.,and Fletcher, D.F., 2001,“A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part I: theoretical model,” Int. J. Heat and Mass Transfer, 44 (2001)
[43] 吳啟明,86年12月版,“汽車排氣淨化裝置”,全國工商出版社。
[44] 鄭明宏,87年11月號,“引擎燃燒壓力量測與分析剖技術簡介”機械工業雜誌。
[45] 黃靖雄,84年9月,汽車原理(全),全華科技圖書(股)公司。
[46] 趙志勇,86年2月四版,“高工補校汽車原理(上)”,科友圖書(股)公司。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top