跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周寅瑄
研究生(外文):Yin-hsuan Chou
論文名稱:具功率因數校正無電流感測同步整流SEPIC轉換器運用於無刷直流馬達之分析與設計
論文名稱(外文):Analysis and Design of a Current-Sensorless Synchronous Rectification Power Factor Correction SEPIC Converter Applying to Brushless DC Motors
指導教授:陳一通陳一通引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:無刷直流馬達同步整流SEPIC轉換器功率因數校正脈寬調變脈幅調變無電流感測TMS32028335
外文關鍵詞:sensorless currentBLDC motorPFCsynchronous rectification SEPIC converterPWMPAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:590
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出具功率因數校正之無電流感測同步整流SEPIC轉換器運用於無刷直流馬達。為了達到簡化控制、提升效率之效果,本系統前級製作一無電流感測之同步整流SEPIC轉換器。該電路利用輸入電壓與輸出電壓之比值關係,直接求出同步整流開關的導通時間無須再透過電流感測元件偵測,藉此關係製作一無電流感測之同步整流SEPIC轉換器,省下偵測輸出電流再將其轉成控制訊號所耗費的成本。此外為了不使切換開關與同步整流開關導通時機重疊造成短路現象,計算切換開關上Coss的充電時間再透過數位晶片內置的暫存器,位移正確的角度使同步整流開關導通。一般類比方式之無電流感測同步整流功能需要透過RC元件的雙斜率積分方式,作為估算電感上升與下降時間。但在功率因數校正之應用上,因為輸入電壓為弦波使得原先設定好的RC元件會無法完整作出正確響應,然而數位晶片在製作此功能時,回授回來的值可透過數位計算處理,故不會有此問題發生。
將前級控制訊號整合至馬達控制晶片中,除了可省去類比控制晶片的成本同時簡化控制電路的複雜度。而為了提升整體馬達運轉範圍,並考量在不增加馬達開關上的電壓應力,除了原先已使用的脈寬調變(Pulse Width Modulation)控制法調整馬達轉速外,另外更運用現有SEPIC硬體架構可升降壓之特性在不增加成本的情況下擴充為脈幅調變(Pulse Amplitude Modulation)控制使馬達可運轉範圍更寬廣,從原先的5500-10000 rpm 擴充到2500-10000 rpm。當馬達達到5500 rpm以上時,馬達上跨壓將維持在165 V並令本系統調整為PWM模式由馬達驅動電路下橋開關進行責任週期調變以達到調速效果。反之倘若低於5500 rpm後,則可令系統自動調整為PAM模式並從165 V開始向下調整而此時馬達驅動電路下橋開關之責任週期為固定狀態。預設的最低轉速為2500 rpm,此時馬達上跨壓為70 V。本文中之控制採用德州儀器的TMS32028335晶片,模擬撰寫於一般MCU時的情況。
This thesis presented a current-sensorless synchronous rectification PFC SEPIC converter applying to the brushless DC motors. To simplify control and improve efficiency, a PFC SEPIC converter with no current sensor but with synchronous rectification is proposed. Through the relationship of the input voltage and output voltage, the duty ratio of the synchronous rectifier switch can be calculated without any current sensing elements and cost can be reduced. In order to avoid the conduction time overlap of the main switch and the synchronous rectifier switch, the charging time causing by the parasitic capacitor of the switch has to be estimated. After calculation, a register of digital-control-chip was set and the signal is outputted correctly at the right timing. In general, the analog control chip used dual-slope integrator including RC elements to estimate the rise time and fall time to implement a current-sensorless synchronous rectification SEPIC converter. However, the analog control circuit applied to the power factor correction topology might not be able to respond correctly with the default RC elements. Digital control chip could solve this response problem.
There are two advantages which were saving the analog-control-chip and simplifying the topology of the control circuit when the control of the front stage converter and control of the end stage BLDC motor were combined in the same digital-control-chip. Two modulation control methods "PWM" (Pulse Width Modulation) and "PAM" (Pulse Amplitude Modulation) were used in the motor control. When the speed was between 5500 and 10000 rpm, the digital-control-chip would set automatically into "constant voltage mode", which applying PWM method and VO is kept at 165V. On the other side, when the speed was between 2500 and 5500 rpm, the digital-control-chip would set automatically into "constant duty mode", which applying PAM method and VO is kept between 70 and 165V. The interface of control was DSP TMS32028335 of Texas Instruments.
中文摘要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與目的 1
1.2 功率因數校正介紹[15] 2
1.2.1 功率因數推導 3
1.2.2 國際對功因校正之相關規範[16] 5
1.2.3 功率因數修正控制 6
1.3 柔性切換介紹 11
1.3.1 柔性技術種類[21]、[22] 12
1.4 同步整流介紹 15
1.4.1 同步整流驅動原理[23]、[24] 15
1.5 脈寬調變與脈幅調變介紹 17
1.6 文獻回顧 19
1.7 內容大綱 20
第二章 具功率因數校正無電流感測同步整流SEPIC轉換器 21
2.1 SEPIC轉換器比較 21
2.2 新型轉換器介紹 25
2.3 SEPIC轉換器推導 27
2.3.1 SEPIC轉換器模式分析與高功因驗證 27
2.3.2 SEPIC轉換器電路之穩態分析 37
2.3.3 具無電流感測同步整流SEPIC轉換器穩態分析 38
2.4 電路的元件設計 41
2.4.1 責任週期 43
2.4.2 電感L1、L2 44
2.4.3 電容C1、CO值 44
2.5 計算電路元件值 46
第三章 單相無刷直流馬達與DSP處理器介紹 49
3.1 無刷直流馬達介紹 49
3.2 無刷直流馬達之構造與應用 50
3.2.1 轉子與定子結構 50
3.2.2 非對稱定子結構[36]、[37] 51
3.2.3 無刷直流馬達數學模型 52
3.3 外部驅動電路 54
3.3.1 全橋換流器及其動作原理 54
3.3.2 換向原理 59
3.4 數控訊號處理器TMS32028335 62
3.5 以數位方式實現控制器 63
第四章 模擬與實驗波形 68
第五章 結論與未來建議 82
5.1 結論 82
5.2 未來建議 83
參考文獻 84
作者簡介 88
[1] Bo-Tao Lin and Yim-Shu Lee, “Power-factor correction using Ćuk converters in discontinuous-capacitor-voltage mode operation”, IEEE Transactions on Industrial Electronics, vol. 44, issue 5, pp. 648-653, October. 1997.
[2] Hangseok Choi, “Interleaved boundary conduction mode (BCM) buck power factor correction (PFC) converter”, IEEE Transactions on Power Electronics, vol. 28, issue 6, pp. 2629-2634, June 2013.
[3] Ahmad J. Sabzali, Esam H. Ismail, Mustafa A. Al-Saffar, and Abbas A. Fardoun, “A new bridgeless PFC SEPIC and Ćuk rectifiers with low conduction and switching losses”, IEEE International Conference on Power Electronics and Drive Systems, pp. 550-556, November 2009.
[4] Domingos Savio and Lyrio Simonetti, “The discontinuous conduction mode SEPIC and Ćuk power factor preregulators: analysis and design”, IEEE Transactions on Industrial Electronics, vol. 44, issue 5, pp. 630-637, October 1997.
[5] Hyun-Lark Do, “Soft-switching SEPIC converter with ripple-free input current”, IEEE Transactions on Power Electronics, vol. 27, issue 6, pp. 2879-2887, June 2012.
[6] C.-L. Shen, Y.-E Wu and M.-H. Chen, “A modified SEPIC converter with soft-switching feature for power factor correction”, IEEE International Conference on Industrial Technology, pp. 1-6, April 2008.
[7] Sang-Hoon Park, So-Ri Park, Jae-Sung Yu, Yong-Chae Jung, and Chung-Yuen Won, “Analysis and Design of a Soft-Switching Boost Converter With an HI-Bridge Auxiliary Resonant Circuit”, IEEE Transactions on Power Electronics, vol. 25,issues 8, pp. 2142-2149, August 2010.
[8] Sung-Pei Yang, Jong-Lick Lin and Shin-Ju Chen, “A novel ZCZVT forward converter with synchronous rectification”, IEEE Transactions on Power Electronics, vol. 21, issues 4, pp. 912-922, July 2006.
[9] Zhao Liang, Zhang Bo and Ma Huasheng, “novel compact synchronous rectifier with power factor correction”, Proceedings of the Eighth International Conference on, Electrical Machines and Systems, vol. 2, pp. 1318-1322, September 2005.
[10] Sung-Pei Yang, Jong-Lick Lin and Shin-Ju Chen, “A Novel soft switching flyback converter with synchronous rectification”, IEEE 6th International Conference on Power Electronics and Motion Control, pp. 551-555, May 2009.
[11] Javier Portos, MP Reddy and Dan Eaton, “Application and advantages of PAM multi speed motors in petroleum and chemical industries”, 2010 Record of Conference Papers Industry Applications Society 57th Annual, pp. 1-10, September 2010.
[12] Yen-Shin Lai, Ko-Yen Lee, Jing-Hong Tseng, Yen-Chang Chen and Tse-Liang Hsiao, “Efficiency comparison of PWM-controlled and PAM-controlled sensorless BLDCM drives for refrigerator applications”, Conference Record of the 2007 IEEE on Industry Applications Conference 2007 42nd IAS Annual Meeting, pp. 268-273, September 2007.
[13] Taniguchi Katsunori, Matano Yasuhiro, Morizane Toshimitsu and Hyun-Woo Lee, “PAM system for motor drive with soft-switching PFC converter”, Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control and Instrumentation, vol. 3, pp. 1820-1825, August 1996.
[14] Yasuo Notohara, Yukio Kawabata, Kazuo Tahara, Makoto Ishii, Yuhachi Takakura and Hiroshi Shinozaki, “Controller for PWM/PAM motor, air conditioner and method of motor control”, US Patent 6626002 B1, September 2003.
[15] 宋自恆、林慶仁, 功率因數修正電路之原理與常用元件規格, 新電子科技雜誌第217期,2004年 四月。
[16] Electromagnetic Compatibility (EMC), Part 3, International Standard IEC61000-3-2, 2001.
[17] Atsushi Hirota, Satoshi Nagai, Mamun Abdullah AI, M. Rukonuzzaman and Mutsuo Nakaoka , “A novel hysteresis current control scheme for single switch type single phase PFC converter”, PCC-Osaka 2002 Proceedings of the Power Conversion Conference, vol. 3, pp. 1223 - 1225 vol.3, April 2002.
[18] Clarissa Gatlan and Leonard Gatlan, “AC to DC PWM voltage source converter under hysteresis current control”, Proceedings of IEEE International Symposium on Industrial Electronics, vol. 2,pp. 469-473, July 1997.
[19] Richard Redl and Brian P. Erisman, “Reducing distortion in peak-current-controlled boost power-factor correctors”, Proceedings of applied power electronics conference and exposition, vol 2, pp. 576-583, February 1994.
[20] Alexander Abramovitch and Sam Ben-Yaakov, “Analysis and design of the feedback and forward paths of active power factor correction systems for minimum input current distortion”, 26th Annual IEEE Power Electronics Specialists Conference, vol. 2, pp.1009-1014, June 1995.
[21] 林鐘烲、楊宗憲, 具柔切技術之高功因電力轉換器:新型零電壓轉移單級高功因返馳式AC/DC電力轉換器, 國立成功大學碩士論文, 2007年。
[22] 陳信助、張煌章, 具同步整流之主動箝位順向式轉換器分析與研製, 崑山科技大學碩士論文, 2007年。
[23] 林鐘烲, 賴建志, 具有同步整流技術之零電流零電壓柔切轉移順向式DC-DC電力轉換器之研製,國立成功大學碩士論文, 2004年。
[24] Y. Kubota, K. Nishimura and K. Kobayashi, “Synchronous rectification circuit using a current transformer”, Twenty-second International Telecommunications Energy Conference, pp 267-273, September 2000.
[25] Sanjeev Singh and Bhim Singh, “Voltage controlled PFC SEPIC converter fed PMBLDCM drive for an air-conditioner”, 2010 Joint International Conference on Power Electronics, Drives and Energy Systems, pp. 1-6, December 2010.
[26] Sanjeev Singh and Bhim Singh, “A Voltage-Controlled PFC Ćuk Converter-Based PMBLDCM Drive for Air-Conditioners”, IEEE Transactions on Industry Applications, vol.48, issue 2, pp. 832-838, March-April 2012.
[27] Sanjeev Singh and Bhim Singh, “Voltage controlled PFC Zeta converter based PMBLDCM drive for an air-conditioner”, IEEE International Conference on Industrial and Information Systems, pp. 550-555, July-August 2010.
[28] Yong Li and Toshio Takahashi, “A digitally controlled 4-kW single-phase bridgeless PFC circuit for air conditioner motor drive applications”, IEEE 5th International Conference on Power Electronics and Motion Control, vol. 1, pp. 1-5, August 2006.
[29] Tilak Gopalarathnam, and Hamid A. Toliyat, “A High Power Factor Converter Topology for Switched Reluctance Motor Drives”, Conference Record of the Industry Applications Conference, vol. 3, pp.1647-1652, October 2002.
[30] Sanjeev Singh and Bhim Singh, “A voltage controlled adjustable speed PMBLDCM drive using a single-stage PFC half-bridge converter”, Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1976-1983, February 2010.
[31] Sanjeev Singh and Bhim Singh, “Isolated Zeta PFC converter based voltage controlled PMBLDCM drive for air-conditioning application”, 2010 India International Conference on Power Electronics ,pp. 1-5,January 2011.
[32] Xuefei Xie, Joe Chui Pong Liu, Franki Ngai Kit Poon and Man Hay Pong, “Current-driven synchronous rectification technique for flyback topology”, 2001 IEEE 32nd Annual Power Electronics Specialists Conference, vol. 1, pp 345-350, January 2001.
[33] Joseph D. Remson, “sepic synchronous rectification”, US Patent 7352158 B2, May 2005.
[34] Sanjeev Singh and Bhim Singh, “Single-phase power factor controller topologies for permanent magnet brushless DC motor drives”, Power Electronics, IET ,vol. 3 , issue 2, pp 147-175, March 2010.
[35] 國立成功大學馬達科技研究中心,直流無刷馬達之構造。
[36] 葉信楠,應用有限元素法建立與分析單相無刷直流馬達之特性,國立雲林科技大學電機所碩士論文,2010年。
[37] 唐仲宏,單相無刷直流馬達無感測驅動器之設計與研製,國立雲林科技大學電機所碩士論文,2011年。
[38] Texas Instruments, “UCC28070”, datasheet.
[39] 董勝源, DSP TMS320LF2407與C語言控制實習, 長高出版社, 2004年六月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top