跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴耀東
研究生(外文):Yao-Tong Lai
論文名稱:利用離子性聚合物-金屬複合材料於尿道人工括約肌之研發
論文名稱(外文):Development of Artificial Urethral Sphincter by Ionic Polymer-Metal Composite
指導教授:蔡偉博
指導教授(外文):Wei-Bor Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:離子性聚合物-金屬複合材料人工括約肌
外文關鍵詞:IPMCartificial urethral sphincter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討的是利用離子性高分子-金屬複合材料與PDMS製成之人工括約肌於尿失禁的治療。離子性高分子-金屬複合材料是一種通電時會產生大於40%形變量的材料,而PDMS則為一具彈性之高分子,利用組合而成的人工括約肌進行尿路動力學測試。另外測試了一些離子性高分子-金屬複合材料的性質,例如:擺動角度測試、厚度與擺動高度關係及產生力量的測試。根據實驗結果,本實驗之離子性高分子-金屬複合材料經過85次使用後其擺動角度與初期使用時相近(約90度),且厚度越薄,擺動高度越高;當離子性高分子-金屬複合材料長度越短時,產生的力量越大。又根據尿路動力學結果顯示,本研究之人工括約肌可提供尿道高達100 cm-H2O的壓力,且當施予電壓為3伏特或4伏特時,壓力下降改變量分別約為10 cm-H2O與20 cm-H2O。
The main point of this thesis is focus on artificial sphincter for urinary incontinence, which uses ionic polymer metal composite (IPMC) and an elastic polymer, polydimethylsiloxane (PDMS) to make this project come true. IPMC is a kind of material which will have more than 40 % shape change under electrical stimulation. Combine IPMC and PDMS to make artificial sphincter in real, surround urinary tract and hold it. We also doing some experiments about characteristics of IPMC, including bending angle, the relationship between thickness and bending displacement, and force generation. According to experiment result, IPMC''s bending angle mostly the same after 85 times uses. As the thickness of IPMC get thinner, the bending displacement will be higher;and the force generation will be larger if the length of IPMC be shorter. According to urodynamic study, our model can offer up to 100 cm-H2O when voltage moved, and decrease about 10 cm-H2O or 20 cm-H2O when voltage was 3 or 4.
中文摘要...............................................I
Abstract..............................................II
目錄.................................................III
圖目錄................................................VI
表目錄.................................................X
英文縮寫與符號說明....................................XI
中英譯名對照表......................................XIII

第一章.................................................1
緒論...................................................1
1.1 研究背景...........................................1
1.2 形狀記憶合金 ( Shape memory alloys )...............4
1.3 電致動高分子 ( Electroactive polymers,EAP)........5
1.4 Nafion 介紹.......................................6
1.5 離子性高分子-金屬複合材料( Ionic Polymer - Metal Composite )............................................7
1.5-1 離子性高分子-金屬複合材料致動原理................9
1.5-2 離子性高分子-金屬複合材料的應用.................10
1.6 電致動高分子於人工括約肌之相關研究................11
1.7 研究動機..........................................12
1.8 研究目的..........................................12
第二章................................................25
實驗藥品、儀器與方法..................................25
2.1 實驗藥品..........................................25
2.2 實驗耗材..........................................26
2.3 實驗儀器..........................................26
2.4 尿路動力學系統 ....................................27
2.5 溶液配置..........................................27
2.6 Nafion膜製作.....................................29
2.7掃描式電子顯微鏡的使用.............................30
2.8 製作離子性高分子-金屬複合材料.....................30
2.8-1 彎曲角度(Bending angle)測試.....................31
2.8-2 離子性高分子-金屬複合材料厚度與擺動高度關係測試.33
2.8-3 離子性高分子-金屬複合材料力的測試...............34
2.9 人工括約肌製作 ....................................34
2.9-1 PDMS製作方法...................................35
2.9-2 量測尿道壓力方法................................36
第三章................................................45
結果與討論............................................45
3.1 製作離子性高分子-金屬複合材料.....................45
3.1-1 彎曲角度測試結果................................46
3.1-2 離子性高分子-金屬複合材料厚度與擺動高度(h)關係測試結果....................................................48
3.1-3離子性高分子-金屬複合材料厚度與擺動高度關係測試結果
......................................................48
3.1-4 離子性高分子-金屬複合材料力的測試結果...........50
3.2 尿路動力學實驗結果................................51
第四章................................................71
結論與建議............................................71
4.1 結論..............................................71
4.2 建議..............................................72
參考文獻..............................................75
附錄..................................................78
1.周建中、陳勇利, 尿失禁. 2002: 書泉出版社.
2.http://www.emedicine.com/med/topic3019.htm.(附錄1)
3.Roberto Olianas, M.F., Urinary and fecal incontinence. 2005, Springer Berlin Heidelberg. p. 272.
4.Gousse, A.E., et al., Artificial urinary sphincter for post-radical prostatectomy urinary incontinence: Long-term subjective results. Journal of Urology, 2001. 166(5): p. 1755-1758.
5.林振寧、葉隆吉, 形狀記憶合金之彈性係數的溫度效應之研究. 2005, 大同大學機械工程研究所碩士論文.
6.Chonan, S., et al., Development of an artificial urethral valve using SMA actuators. Smart Materials and Structures, 1997. 6(4): p. 410-414.
7.Nishi, K., et al., Development of an implantable artificial anal sphincter using a shape memory alloy. Journal of Pediatric Surgery, 2004. 39(1): p. 69-72.
8.Shahinpoor, M. and K.J. Kim, Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Materials & Structures, 2005. 14(1): p. 197-214.
9.http://www.dupont.com.tw/5-02.htm#1.(附錄2)
10.Shahinpoor, M. and K.J. Kim, Ionic polymer-metal composites: I. Fundamentals. Smart Materials & Structures, 2001. 10(4): p. 819-833.
11.Oguro K, K.Y.a.T.H., Trans. Journal of Micromachine Society, 1992. 5(27).
12.Sadeghipour, K., R. Salomon, and S. Neogi, Development of a novel electrochemically active membrane and ''smart'' material based vibration sensor/damper. Smart Materials and Structures, 1992. 1(2): p. 172-179.
13.Shahinpoor, M., Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Materials and Structures, 1992. 1(1): p. 91-94.
14.謝明發, 電致動高分子材料及其生物醫學用途. 2002.(附錄3)
15.Y.Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition 2004, SPIE Press.
16.Fujiwara, N., et al., Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive materials. Chemistry of Materials, 2000. 12(6): p. 1750-1754.
17.Kim, K.J. and M. Shahinpoor, Ionic polymer-metal composites: II. Manufacturing techniques. Smart Materials & Structures, 2003. 12(1): p. 65-79.
18.S.Banik, M., Electroactive polymer based artificial sphincter and muscle patches 2004, US patent 6749556.
19.許敦皓、朱銘祥、林宙晴, 應用離子性聚合物-金屬複材開發尿道人工括約肌之研究. 2005, 國立成功大學機械工程研究所碩士論文.
20.Hegde, Anant V., et al. Artificial Sphincter. 2006,US Patent 20060047180
21.http://www.shands.org/health/surgeries/100115.html#.(附錄4)
22.http://www.icsoffice.org/documents/ici_pdfs_3/v1.pdf/historique.pdf (附錄5)
23.http://www.duj.com/Article/Stone/Stonefig1_7.html.(附錄6)
24.http://www.visitams.com/prof_male_detail_objectname_prof_male_800.html.(附錄7)
25.http://www.visitams.com/DAM_public/5107.pdf.(附錄8)
26.http://www.iem.titech.ac.jp/yamazaki/research/mechanism/PEFC.htm.(附錄9)
27.Nemat-Nasser, S. and Y.X. Wu, Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms. Journal of Applied Physics, 2003. 93(9): p. 5255-5267.
28.Shahinpoor, M., et al. Ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators. in 5th Annual International Symposium on Smart Structures and Materials. 1998. San Diego.
29.Shahinpoor, M. and M. Mojarrad, Soft actuators and artificial muscles. 2000, US patent 6109852.
30.林奇隆、黃順發, 田口法最佳化壓電無閥式微幫浦. 2005, 國立雲林科技大學機械工程研究所碩士論文.
31.Bonomo, C., et al., A Circuit to Model the Electrical Behavior of an Ionic Polymer-Metal Composite. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, 2006. 53(2).
32.黃振宏、林秀麗, Nafion溶液成膜的物理性質與形態學研究. 2002, 元智大學化學工程研究所碩士論文.
33.http://www.dupont.com/fuelcells/pdf/dfc201.pdf: p. 1.(附錄10)
34.Lee, S.G., et al., Performance improvement of IPMC (ionic polymer metal composites) for a flapping actuator. International Journal of Control Automation and Systems, 2006. 4(6): p. 748-755.
35.http://www.dupont.com/fuelcells/pdf/dfc201.pdf: p. 2.(附錄11)
36.Kim, S.J, et al., Performance enhancement of IPMC actuator by plasma surface treatment. Smart Mater. Struct, (16)2007, N6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top