跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李文龍
研究生(外文):Wen-Lung Lee
論文名稱:感應馬達之向量控制分析與適應控制
論文名稱(外文):Adaptive Control for Induction Motors Using Principles of Vector Control
指導教授:練光祐
指導教授(外文):Kuang-Yow Lian
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:138
中文關鍵詞:感應馬達適應控制滑模控制向量控制擴增卡門濾波器
外文關鍵詞:Induction motorsAdaptive controlSliding mode controlVector controlExtended kalman filter
相關次數:
  • 被引用被引用:3
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
感應馬達伺服系統本身為一多階非線性時變耦合系統,若使用傳統之線性控制方法,則系統無法獲得強健的全域控制,本篇論文為配合真實系統情況採用定子座標參考系統之五階非線性模式,主要研究感應馬達部分參數未知及轉子狀態變數不易量測情況下,利用向量控制之分析及適應控制來設計感應馬達的速度及位置控制器。
本論文中,吾人將分析感應馬達的物理特性及探討向量控制的工作原理,釐清馬達控制的一些概念。在第三章中,根據這些特性及原理,結合two-stage 設計步驟及virtual desired variables的觀念,將感應馬達速度追蹤問題轉換成轉矩追蹤問題,並配合一般所熟知的PI電流內迴路控制器,重新陳述了在機械參數及轉子電阻未知,且不使用轉子磁通觀測器情況下,速度及位置控制器之設計方式。接著,在第四章中,吾人結合backstepping method與virtual desired variables的觀念,並為了使系統在參數不確定性與外部的擾動影響下仍然能維持閉迴路響應的追蹤性質,於是設計滑模控制器取代上述的PI電流內迴路控制器,並考慮真實系統的某些狀態不可量測時,提出Extended Kalman filter 當作狀態估測器並以此估測器來濾除外在雜訊的干擾,使系統有良好的響應,進而完成控制器之設計。由各章的模擬結果,可明顯看出所設計之控制器,均具有不錯的暫態及穩態響應。
我們除了對上述方法做一完整闡述及理論證明外,並且將整個感應馬達的速度及位置控制系統,以dSPACE systems的架構來實現,其中包含了高速的數位信號處理器(TMS320C31),而控制器則用SIMULINK來編寫,經由Real-Time Workshop(RTW)將SIMULINK所設計之系統控制法則方塊模組直接轉換成C程式,配合dSPACE systems所提供的即時線上監督程式(TRACE 31)來做線上監視狀態變化與儀表板(COCKPIT 31)做線上參數的更改,並結合個人電腦及感應馬達驅動裝置來達成控制的目的,於第五章中,由實作結果證明,這些具有適應性之非線性控制器的確具有其實用價值。
On the basis of measurable rotor speed, stator current and stator voltage, the control design methodology for speed tracking and torque tracking problems of induction motors with unknown rotor resistance and loading torque is proposed in this paper. The proposed nonlinear adaptive controller is developed by integrating the design methods of a two-stage design approach and virtual desired variables. Based on the two-stage approach, the speed tracking problem is transformed to an equivalent control problem for torque tracking. The virtual desired variables include desired stator currents and desired rotor fluxes, which are naturally determined under the conditions induced from the principles for vector control.
In Chapter 3, we first consider the model of a current-fed induction motor. In the case, a measurable auxiliary signal will be introduced to relate the rotor flux error, whereby the direct feedback of the rotor flux can be avoided. Then the control inputs are chosen for the purpose of steering the state variables toward the desired ones. Under the condition of persistent excitation, this controller structure will provide the properties of asymptotic speed tracking and exponential torque tracking in physical operating conditions, whereas all of the internal signals are bounded. It is worth remarking that no explicit observer for the rotor flux will be constructed in the controller. In Chapter 4, the sliding mode controller is used to substitute the PI-controller. This will maintain good tracking performance when system uncertainty and external disturbance exists. Also, an Extended Kalman Filter is used to estimate the states that are not measurable in the practical system. The results of simulation are shown to demonstrate good transient and steady state responses of the proposed control algorithm.
Finally, we make a complete statement and theory proof. The whole induction motor speed and position control system is implemented by using a high-speed digital signal processor TMS320C31 in the dSPACE environment. An induction motor of driver module is used to achieve the control task. We can see from experiments, that these adaptive nonlinear controllers have good performances.
第一章 緒論1
1.1 簡介1
1.2 研究動機4
1.3 論文架構4
第二章 感應馬達之數學模型6
2.1 前言6
2.2 三相系統至二維正交座標系統之轉換7
2.3 二維正交座標系統之轉換10
2.4 感應馬達動態方程式之建立12
2.4.1 定子座標參考系統12
2.4.2 同步旋轉座標參考系統15
2.5 感應馬達之物理特性17
2.5.1 Cascade System17
2.5.2 Passivity Workless Term18
2.5.3 最佳轉矩的產生(Optimal generated torque)18
2.5.4 轉子磁通重建(Reconstruction of Rotor Flux)20
2.6 向量控制21
2.7 Virtual Desired Variables25
第三章 轉子電阻未知情況下的感應馬達簡化模式之適應控制27
3.1 前言27
3.2 Two-Stage Design Method28
3.3 速度控制29
3.3.1 轉速控制器之設計30
3.3.2 適應性的轉矩控制器之設計32
3.4 位置控制40
3.5 模擬結果43
3.5.1 速度控制44
3.5.2 位置控制45
第四章 轉子電阻未知情況下的感應馬達完整模式之適應控制57
4.1 前言57
4.2 卡門濾波理論58
4.2.1 Kalman Filter58
4.2.2 Extended Kalman Filter62
4.3 以Extended Kalman filter為基礎之速度控制66
4.3.1 適應性的轉矩控制器之設計66
4.3.2 以Sliding mode Control為基礎的電流內迴路控制器71
4.4 位置控制77
4.5 模擬結果78
4.5.1 速度控制79
4.5.2 位置控制80
第五章 控制器軟硬體設計環境與實作結果97
5.1 dSPACE systems97
5.1.1 硬體架構介紹97
5.1.2 軟體設計100
5.1.3 Real-Time Workshop(RTW)101
5.1.4 即時線上監視(TRACE 31)102
5.1.5 儀表板(COCKPIT 31)103
5.2 實作硬體規劃104
5.3 實作結果107
5.3.1 感應馬達簡化模式之適應控制107
5.3.2 感應馬達完整模式之適應控制110
第六章 結論及未來展望131
6.1 結論131
6.2 未來展望132
參考文獻133
[Atk 91] D. Atkinson, P. Acarnly, and J. Finch, “Observers for induction motor state and parameter estimation,” IEEE Trans. Ind. Applicat. vol. 27, pp. 1119-1127, 1991.
[Bla 72] F. Blaschke, “The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machine,” Siemens Review, vol. 34, pp. 217-220, 1972.
[Bod 94] M. Bodson , J. N. Chiasson and R. Novotnak, “High-performance induction motor control via input-output linearization,” IEEE Con. Sys. Mag., vol. 14, no. 4, pp. 25-33, 1994.
[Bos 86] B. K. Bose, Power Electronics and AC Drivers. Englewood Cliffs, NJ: Prentice Hall, 1986.
[Bre 57] D. S. Brereton, D. G. Lewis, and C. G. Young, “Representation of induction motor loads during power system stability studies,” AIEE Trans., vol. 76, pp. 451-461, August 1957.
[Bro 85] David M. Brod and Donald W. Novotny, “Current Control of VSI-PWM Invert,” IEEE Trans. Ind. Appl., vol. IA-21, no. 4, 1985.
[Coc 96] dSPACE, COCKPIT Instrument Panel, User’s Guide, 1996.
[Dea 96] Paul A. S. Dewit, R. Ortega and I. Mareels, “Indirect Field-oriented Control of Induction Motors is Robustly Globally Stable,” Automatica, vol. 32, no. 10, pp. 1393-1402, 1996.
[Dot 90] Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors. Englewood Cliffs, NJ: Prentice-Hall, 1990.
[Fin 98] J. W. Finch, D. J. Atkinson and P. P. Acarnley, “Full-order estimator for induction motor states and parameters,” IEE Proceedings-Electric Power Applications, vol. 145, iss. 3, pp. 169-179, 1998.
[Gao 93] W. Gao, and J. C. Hung, “Variable Structure Sontrol of Nonlinear Systems :A New Approach,” IEEE Trans. Indus. Electro., vol. IE-40, No. 1, pp. 45-55,1993.
[Har 96] F. Hardan, L. Zhang and W. Shepherd, “Application of an extended Kalman Filter for high-performance current regulation of a vector-controlled induction machine drive,” Transactions-institute of Measurement and Control, vol. 18, issue 2, pp. 69-76, 1996.
[Hu 96] J. Hu and D. M. Dawson, “Adaptive Control of Induction Motor Systems Despite Rotor Resistance Uncertainty,” Automatica, vol. 32, no. 8, pp. 1127-1143, 1996.
[Jan 92] P. L. Jansen and R. D. Lorenz, “A Physically Insightful Approach to the Design and the Accuracy Assessment of Flux Observers for Field Oriented Induction Machine Drives,” IEEE Ind. Appli. Meeting, vol. I, pp. 570-577,1992.
[Kan 92] I. Kanellakopoulos, P. T. Krein and F. Disilcestro, “Nonlinear flux-observer-based control of induction motors,” Proceedings of the 1992 American Control Conference, Chicago, IL, pp. 1700-1704,1992.
[Kha 92] H. K. Khalil, Nonlinear System. New York: Macmillan, 1992. H. K. Khalil, Nonlinear System. New York: Macmillan, 1992.
[Kim 94] Young-Real Kim, student Member et al., “Speed sensorless vector control of induction motor using extended kalman filter,” IEEE Trans. Indus. Appli., vol. 30, No. 5, pp. 1225-1233, September/October, 1994.
[Kra 86] P. C. Krause, Analysis of Electric Machinery. New York: McGraw-Hill, 1986.
[Kra 65] P. C. Krause and C. H. Thomas, “Simulation of symmetrical induction machinery,” IEEE Trans. Power Apparatus Syst., vol. PAS-84, no. 11, pp. 1038-1053, 1965.
[Kri 87] R. Krishnan, and F. C. Doran, “Study of parameter sensitivity in high performance inverter-fed induction motor drive systems,” IEEE Trans. on Indus. Appli., vol. 23, pp. 623-635, 1987.
[Kro 51] G. Kron, John Wiley and Sons, Equivalent Circuits of Electric Machinery, New York, 1951.
[Krz 87] Z. Krzeminsli, “Nonlinear control of induction motor,” Proceedings of the 10th IFAC Workd Congress, Munich, Germany, pp. 349-354, 1987.
[Kwe 98] T. J. Kweon and D. S. Hyun, “High Performance Speed Control of Electric Machine Using Kalman Filter and Self-tuning Regulator,” IEEE Power Electronics specialists Conference, vol. 1,pp. 280-286, 1998.
[Lai 96] Yen-Shin Lai, “Aunified Approach to Molding and Control of Induction Motors,” IEEE Trans. on Education, 1996.
[Lee 98] C. M. Lee and C. L. Chen, “Speed sensorless vector control of induction motor using Kalman-filter-assisted adaptive observer,” IEEE Trans. on Industrial Electronics, vol. 45, iss. 2, pp. 359-361,1998.
[Leo 85] W. Leonhard, Control of Electrical Drives. Berlin: Springer-Verlag, 1985.
[Lin 96] Y. S. Lin, J. H. Yang and L. C. Fu, “Nonlinear Robust Adaptive Control of Induction Motors,” Automatic Control Conference, Tamkang University, Taiwan, 1996.
[Lor 94] R. D. Lorenz, Thomas A. Lipo and Donald W. Novotny, “Motion Control with Induction Motors,” Proceedings of the IEEE., vol. 82, no. 8, pp. 1215-1240, 1994.
[Luc 89] A. De Luca and G. Ulivi, “Design of an exact nonlinear controller for induction motors,” IEEE Trans. Automatic Control, vol. 30 no. 1, pp. 126-133, 1989.
[ Mar 96] R. Marino, S. Peresada and P. Tomei, “Output Feedback Control of Current-Fed Induction Motors with Unknown Rotor Resistance,” IEEE Trans. Control. Systems Technology, vol. 4, no. 4, pp. 327-335, 1996.
[Mar 93a] R. Marino, S. Peresada and P. Valigi, “Adaptive Input-Output Linearizing Control of Induction Motors,” IEEE Trans. Automatic Control, vol. 38, no. 2, pp. 208-221, 1993.
[Mar 93b] R. Marino, S. Peresada, and P. Tomei, “Adaptive output feedback control of current-fed induction motor,” in Proc. 12th IFAC World Congr., Sydney Australia, pp. 451-454, 1993.
[Ort 93a] R. Ortega, C. Canudas and S. I. Seleme, “Nonlinear Control of Induction Motors: Torque Tracking with Unknown Load Disturbance,” IEEE Trans. Automatic Control, vol. 38, no. 11, pp. 1675-1680, 1993.
[Ort 93b] R. Ortega and G. Espinosa, “Torque regulation of induction motors,” Automatica, vol. 29, no. 3, pp. 621-633, 1993.
[Ort 91] R. Ortega and G. Espinosa, “ A controller design methodology for systems with physical structures: Application to induction motors,” Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, England, pp. 2345-2349, 1991.
[Par 29] R. H. Park, “Two-reaction theory of synchronous machines-generalized method of analysis─Part I,” AIEE Trans., vol. 48, pp. 716-727, July 1929.
[Pop 73] V. P. Popov, Hyperstability of Automatic Control Systems. New York: Spring Verlag, 1973.
[Rau 94] Thomas von Raumer, Jean Michel Dion, Luc Dugard and Jean Luc Thomas, “Applied Nonlinear Control of an induction Motor Using Digital Signal Processing,” IEEE Trans. Control. Systems. Technology, vol. 2, no. 4, pp. 327-335, 1994.
[Rau 93] V. Raumer T., J. M. Dion and L. Dugard, “Adaptive non-linear speed control of induction motors,” Int. J. Adaptive Contr. Signal Proc., vol. 7, pp. 435-455, 1993.
[Rea 96] dSPACE, Real-Time Interface to Simulink, User’s Guide, 1996.
[Rei 98] K. Reif ,S. Guenther, E. Yaz and R. Unbehauen, “Stability of the Continuous-Time Extended Kalman filter,” Automatisierungstechnik, vol. 46, issue 12, pp. 592-601, 1998.
[Shy 95] K.-K. Shyu and H.-J. Shieh, “Variable Structure Current Control for Induction Motor Drives by Space Voltage Vector PWM,” IEEE Trans. Ind. Elec., vol. 42, no. 6, 1995.
[Sta 38] H. C. Stanley, “An analysis of the induction motor,” AIEE Trans., vol. 57(supplement), pp. 751-755, 1938.
[Ter 97] B. Terzie, H. Dragicevic and M. Jadric, “Application of the extended kalman filter to speed and rotor position estimation of brushless DC motor,” Automatika, vol. 38, iss. 1-2, pp. 53-58, 1997.
[Tra 96] dSPACE, TRACE Module, User’s Guide, 1996.
[Trz 94] A. M. Trzynadlowski, The Field Orientation Principle in Control of Induction Motors. Boston: Kluwer Academic Publishers, 1994.
[Utk 77] V. I. Utkin, “Variable structure system with sliding modes,” IEEE Trans. Automat. Contr., vol.AC-22, no. 2, April, pp. 212-222, 1977.
[Vas 90] Peter Vas, Vector Control of AC Machines. Oxford University Press, New York, 1990.
[蔡 97] 蔡宏儒, “電流餽送型感應馬達之高性能適應控制,” 私立中原大學電機工程研究所碩士學位論文, 1997.
[廖 98] 廖上翔, “以適應性模糊及滑模方法為基礎的感應馬達控制,” 私立中原大學電機工程研究所碩士學位論文, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top