跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/12/02 15:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱麗雯
研究生(外文):Choo, Lai Mun
論文名稱:人類MOB2蛋白在纖維肉瘤細胞中扮演細胞延展的功能探討
論文名稱(外文):The function of human MOB2 in cell spreading in fibrosarcoma cells
指導教授:范聖興
指導教授(外文):Fan, Seng Sheen
口試委員:謝明麗曾淑芬胡承波周成功范聖興
口試委員(外文):Hsieh, MingliTzeng, Shun-FenHu, Cheng-PoChou, Chen-KungFan, Seng Sheen
口試日期:2011-06-24
學位類別:碩士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:72
中文關鍵詞:人類MOB2蛋白細胞延展纖維肉瘤細胞
外文關鍵詞:human MOB2cell spreadingfibrosarcoma cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
細胞移動的初步機制,必須在基材上進行延展。細胞延展在癌細胞轉移中扮演着一個關鍵性的調控步驟。因此透過調控細胞延展的研究可以提供防止細胞轉移的治療策略。細胞延展和爬行都涉及actin聚合在細胞膜的前緣和尾部抽離。調節細胞延展和爬行雖已被廣泛研究,但詳細分子機制仍不清楚。根據以往的研究,Mob2蛋白會藉由參與actin細胞骨架的重新排列進而影響神經纖維生長。此外,Mob2在酵母菌的極性生成和果蠅感光細胞的發育過程中也影響actin細胞骨架。但是目前沒有研究指出Mob2是否會影響細胞延展和細胞爬行功能。在本研究中,我們發現人類纖維腫瘤(HT1080) 細胞展延需要hMOB2蛋白參與。免疫細胞染色結果顯示,人類纖維腫瘤(HT1080) 細胞爬行時,hMOB2會分佈在爬行的細胞前緣。進一步探討hMOB2是否參與細胞移動,我們利用shRNA的方式降低細胞內hMob2蛋白的表現觀察細胞延展和細胞爬行的情況,hMOB2在人類纖維腫瘤(HT1080) 細胞會延遲細胞展延。除此之外,過量表達野生型hMOB2蛋白會促進hMOB2累積在細胞的前緣和增強細胞延展能力。為了更進一步瞭解hMOB2在細胞移動時的功能性區域,我們建立了持續表達突變型(A107G、Y110A)的hMOB2蛋白。結果顯示突變型的hMOB2蛋白會影響hMOB2蛋白在細胞前緣的累積及延遲細胞延展的能力。綜合以上結果,推測hMOB2蛋白會透過影響其表现在細胞前緣,來調控細胞展延。然而在人類纖維腫瘤細胞 (HT1080)移動的速率,降低細胞內hMob2,表現野生型和突變型的細胞株中,細胞移動的速率並沒有顯著的差異。過量表達野生型hMOB2蛋白會形成較多的板狀偽足結構,並且會以群體方式來移動。此研究結果提供對細胞延展的分子機制有更進一步的了解。



Cell spreading is an initial mechanism for cell migration which plays a vital role in cancer development. Cell spreading has been shown to act as one of the key regulating steps between static and metastatic transition of a cancer cell. Hence, by identifying regulatory networks controlling cell spreading, it may provide valuable information and therapeutic strategies for preventing tumor metastasis. Both cell spreading and cell migration involve actin polymerization at the leading edge of plasma membrane follow by cell retraction at the rear end of cells. The molecular mechanisms in regulating cell spreading and cell migration have been extensively studied but remain unclear. Studies from yeast, Drosophila to mammalian cells have shown that MOB2 protein plays an important role in controlling the cell morphology changes by affecting cell polarity and rearrangement of actin cytoskeleton. Currently there is no research done to study the function of Mob2 in cell spreading and cell migration. In this study, we identified hMOB2 protein which plays a significant role in promoting cell spreading in HT1080 human fibrosarcoma cells. Our results showed that hMOB2 was detected at the leading edge of migrating HT1080 human fibrosarcoma cell. To study whether hMOB2 was involved in cell motility, we downregulated hMOB2 expression using RNA interference and found that cell spreading was delayed in HT1080 cells. In addition, we observed that overexpression of hMOB2 enhanced cell spreading in HT1080 cells and enhanced its accumulation at the leading edge. Furthermore, to determine the possible functional domain in cell motility, we successfully generated A107G, Y110A point mutated hMOB2 stable cell lines. Over-expressed point mutated hMOB2 expression delayed cell spreading and suppressed its accumulation at the leading edge. These observations suggested that hMOB2 affects cell spreading by regulating its expression at leading edge. No significant difference was observed in the migration rate between the different HT1080 cell populations when the percentage of gap closure was determined. However, over-expressed wild type hMOB2 induced broad lamellipodial structures and moved as a coherent group when compared with parent cells. These studies provided additional information on the molecular mechanisms which control cell spreading.
TABLE OF CONTENTS

Page

ABSTRACT 1
摘要 3
CHAPTER
1.0 INTRODUCTION
1.1 Cell spreading 5
1.2 Cell Migration 6
1.3 Signal involves in actin polymerization 6
1.4 MOB protein 8
1.4.1 MOB structure 9
1.4.2 Mob2 in yeast study 10
1.4.3 Dmob2 in Drosophila study 10
1.4.4 Mob2 in mammalian cells study 11
1.5 Specific aims on my studies 12

2.0 MATERIALS AND METHODS
2.1 Culture HT1080 cells 14
2.2 Mob2 RNA interference 14
2.3 Infection of HT1080 cells 14
2.4 Construction of plasmids
2.4.1 RNA extraction 15
2.4.2 Reverse transcription-Polymerase Chain Reaction 16
2.4.3 Restriction endonucleases 17
2.4.4 Ligation 17
2.4.5 Bacterial Transformation 17
2.4.6 Plasmid DNA extraction 18
2.5 Transfection of HT1080 cells 18
2.6 Western Blot 19
2.7 Immunofluorescence 20
2.8 Wound healing assay 21
2.9 Cell spreading 21
2.10 Cell proliferation assay and population doubling time 22

3.0 RESULTS
3.1 hMOB2 expression in HT1080 cells 23
3.2 Downregulation of hMOB2 affects cell spreading 23
3.3 Overexpression of hMOB2 promotes its accumulation at the 25
leading edge of migrating cells and enhances cell spreading
3.4 Structural conserved of Mob2 proteins 27
3.5 A107G,Y110A point mutate hMOB2 interferes cell spreading 28
3.6 Qualitative changes in overexpression hMOB2 migrating cells 30


4.0 DISCUSSION
4.1 Cell spreading Classification 33
4.2 hMOB2 functions at the plasma membrane 34
4.3 Point mutation hMOB2 affects localization of hMOB2 36
4.4 hMOB2 does not affect cell migration but affected migrating 37
morphology
4.5 Partner interacting with hMOB2 38

5.0 REFERENCES 40

LIST OF FIGURES
Fig. 1. Sequence alignment of human and mouse Mob2 proteins. 45
Fig. 2. Subcellular localization of hMOB2 in HT1080 cells. 46
Fig. 3. Downregulation of hMOB2 expression in 47
shRNA treated HT1080 cells.
Fig. 4. Downregulation hMob2 does not affect the localization 48
of actin cytoskeleton in HT1080 cells.
Fig.5. Three categories of spreading cells. 49
Fig. 6. Downregulation of hMOB2 expression affected cell spreading. 50
Fig. 7. Protein sequence alignment of generated wild type hMOB2. 54
Fig. 8. Overexpression of wild type human MOB2 stable cell lines. 55
Fig. 9. Overexpression of wild type hMOB2 promoted 56
its accumulation at the leading edge of migrating cells.
Fig. 10. Overexpression of hMOB2 spreads faster than 57
wild type (parent cells).
Fig. 11. Sequence alignment of human MOB proteins. 60
Fig. 12. Experimental design on point mutation and deletion region 61
of hMOB2 construct.
Fig. 13. Protein sequence alignment of A107G,Y110A point mutation 62
hMOB2 construct.
Fig. 14. Overexpression of A107G,Y110A point mutation hMOB2 63
stable cell lines.
Fig. 15. Expression of A107G,Y110A point mutation hMOB2 64
protein suppressed its accumulation at the leading edge.
Fig. 16. Point-mutated hMOB2 protein interfered cell spreading. 65
Fig. 17. Actin filament enriched at the plasma membrane of HT1080 cells 67
expressed hMOB2.
Fig. 18. Wound healing assay shown similar migration rate. 68
Fig. 19. Qualitative changed in overexpression hMOB2 expressing cells 70
in cell migration.
Fig. 20. Higher magnification indicated qualitative changes in 71
overexpression hMOB2 cells in wound healing assay.
Fig. 21. Cell proliferation assay. 72

Arthur, W.T., and Burridge, K. (2001). RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Molecular Biology of the cell 12, 2711-2720.

Baillat, G., Gaillard, S., Castets, F., and Monneron, A. (2002). Interactions of phocein with nucleoside-diphosphate kinase, Eps15, and Dynamin I. J. Biol. Chem. 277, 18961-18966.

Bailly, Y.J., and Castets, F. (2007). Phocein: A potential actor in vesicular trafficking at Purkinje cell dendritic spines. Cerebellum 23, 1-9.

Baldassarre, M., Razinia, Z., Burande, C.F., Lamsoul, I., Lutz, P.G., and Calderwood, D.A. (2009). Filamins regulate cell spreading and initiation of cell migration. Plos one 4, 7830-7845.

Brugmans, M., Cassiman, J.J., Vanderheydt, L., Oosterlinck, A.J.J., Vlietinck, R., and Berghe, H.V.D. (1982). Quantification of the degree of cell spreading of human fibroblasts by semi-automated analysis of the cell perimeter. Cytometry 3, 262-268.

Coene, E.D., Gadelha, C., White, N., Malhas, A., Thomas, B., Shaw, M., and Vaux, D. (2011). A novel role for BRCA1 in regulating breast cancer cell spreading and motility. J. Cell Biol. 192, 497-512.

Dubin-Thaler, B.J., Giannone, G., Dobereiner, H.G., and Sheetz, M.P. (2004). Nanometer analysis of cell spreading on Matrix-Coated surfaces reveals two distinct cell states and STEPs. Biophysical J. 86, 1794-1806.

Fabre-Guillevin, E., Malo, M., Cartier-Michaud, A., Peinado, H., Mareno-Bueno, G., Vallee, B., Lawrences, D.A., Palacios, J., Cano, A., Barlovatz-Meimon, G., and Charriere-Bertrand, C. (2008). PAI-1 and functional blockade of SNAI1 in breast cancer cell migration. Breast Cancer Res 10: R100.

Flevaris, P., Stojanovic, A., Gong, H., Chishti, A., Welch, E., and Du, X.P. (2007). A molecular switch that controls cell spreading and retraction. J. Cell Biol 179, 553-565.

Friedl, P. (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Current Opinion in Cell Biology 16, 14–23.

Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514.

Hall, A. (2005). Rho GTPases and the control of cell behavior. Biochemical Society Transactions 33, 891-895.

He, Y., Emoto, K., Fang, X.L., Ren, N., Tian, X.J., Jan, Y.N., and Adler, P.N. (2005). Drosophila Mob family proteins interact with the related Tricornered (Trc) and Warts (Wts) kinases. Mol. Bio. Cell. 16, 4139-4152.

Hergovich, A. (2011). MOB control: Reviewing a conserved family of kinase regulators. Cell Signal. doi:10.1016/j.cellsig.2011.04.007.

Hergovich, A., Bichsel, S.J., and Hemmings, B.A. (2005). Human NDR kinases are rapidly activated by MOB proteins through recruitment to the plasma membrane and phosphorylation. Mol Cell Biol 25, 8259-8272.

Hergovich, A., Cornils, H., and Hemmings, B.A. (2008). Mammalian NDR protein kinases: From regulation to role in centrosome duplication. Biochimica et Biophysica Acta 1784, 3-15.

Hergovich, A, Kohler, R.S., Schmitz, D., Vichalkovski, A., Cornils, H., and Hemmings, B.A. (2009). The MST1 and hMOB1 tumor suppressors control human centrosome duplication by regulating NDR kinase phosphorylation. Current Biology 19, 1692-1702.

Hergovich, A., Stegert, M., Schmitz, D., and Hemmings, B.A. (2006). NDR kinases regulate essential cell processes from yeast to humans. Nature Reviews Molecular Cell Biology 7, 253-264.

Hou, M.C., Guertin, D.A., McCollum, D. (2004). Initiation of cytokinesis is controlled through multiple modes of regulation of the Sid2p-Mob1p kinase complex. Mol Cell Biol 24, 3262-3276.

Hou, M.C., Wiley, D.J., Verde, F., and McCollum, D. (2003). Mob2p interacts with the protein kinase Orb6p to promote coordination of cell polarity with cell cycle progression. J. of Cell Science 116, 125-135.

Kohler, R.S., Schmitz, D., Cornils H., Hemmings, B.A., and Hergovich, A. (2010). Differential NDR/LATS interactions with the Human MOB family reveal a negative role for hMOB2 in the regulation of Human NDR kinases. Mol. Cell. Biol. 18, 4507-4520.

Komarnitsky, S.I., Chiang, Y.C., Luca, F.C., Chen, J., Toyn, J.H., Winey, M., Johnston, L.H., and Denis, C.L. (1998). DBF2 Protein Kinase Binds to and Acts through the Cell Cycle-Regulated MOB1 Protein. Mol Cell Biol. 18, 2100-2107.
Lerner, A.C., Chin, T.E., Brent, R. (2001). Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739-750.

Lin, C.H., Hsieh, M.L., Fan, S.S. (2011). The promotion of neurite formation in Neuro2A cells by mouse Mob2 protein. FEBS letters 585, 523-530.

Liu, L.Y., Lin, C.H., and Fan, S.S. (2009). Function of Drosophila mob2 in photoreceptor morphogenesis. Cell Tissue Res 338, 377-389.
Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., and Matsudaira, P. (2008). Molecular Cell Biology. 6th Ed. New York: W.H. Freeman and Company. 713-751.

Luca, F.C., and Winey, M. (1998). MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol Biol Cell 9, 29-46.

McGrath, J.L. (2007). Cell Spreading: The power to simplify. Current Biology 17, 357-358.
Mrkobrada, S., Boucher, L., Ceccarelli, D.F., Tyers, M., and Sicheri, F. (2006). Structural and functional analysis of Saccharomyces cerevisiae Mob1. J Mol Biol 362, 430-440.

Pham, H., Yu, H., Laski, F.A. (2008). Cofilin/ADF is required for retinal elongation and morphogenesis of the Drosophila rhabdomere. Dev Biol 318, 82-91.
Ponchon, L., Dumas, C., Kajava, A.V., Fesquet, D., Padilla, A. (2004). NMR solution structure of Mob1, a mitotic exit network protein and its interaction with an NDR kinase peptide. J. Mol Biol 337, 167-182.

Rasheed, S., Nelson-Rees, W.A., Toth, E.M., Arnstein, P., and Gardner, M.B. (1974). Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027-1033.

Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704-1709.

Senju. Y., and Miyata, H. (2009). The role of actomyosin contractility in the formation and dynamics of actin bundles during fibroblast spreading. J.Biochem. 2, 137-150.

Shen, J.C., Unoki, M., Ythier, D., Duperray, A., Varticovski, L., Kumamoto, K., Peduex, R., and Harris, C. C. (2007). Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha 1. Cancer Res 6, 2552-2558.

Stavridi, E.S., Harris, K.G., Huyen, Y., Bothos, J., Verwoerd, P.M., Stayrook, S.E., Pavletich, N.P., Jeffrey, P.D., and Luca, F.C. (2003). Crystal structure of a human Mob1 protein: toward understanding Mob-regulated cell cycle pathways. Structure 11, 1163-1170.

Tsumura, Y., Toshima, J., Leeksma, O.C., Ohashi, K., and Mizuno, K. (2005). Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem. J. 387, 627-637.

Weiss, E.L., Kurischko, C., Shokat, K., Drubin, D.G., Luca, F.C. (2002). The Saccharomyces cerevisiae Mob2p–Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell–specific localization of Ace2p transcription factor. J Cell Biol 158, 885-900.

Ye, X., Nikolaidis, N., Nei, M., and Lai, Z.C. (2009). Evolution of the mob gene family. The Open Cell Signaling Journal 1, 1-11.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top