ㄧ、中文部分
九章出版社編輯部 (1989) 。模糊數學入門。台北市:九章。
王秀琲、胡豐榮、 許天維 (2004) 。國小五年級學童分數概念之實作評量與SS分析。測驗統計年刊,12 (上) ,102-140。王瑋樺 (2001) 。國小三年級數學學習障礙學生加法文字題解題歷程與補救教學之研究。國立屏東師範學院數理教育研究所碩士論文,屏東縣。何偉雲 (1995) 。學生學習成就的模糊統計分析。國立屏東師範學院屏東師院學報,8,167-180。何森豪 (2001) 。 van Hiele幾何發展水準之量化模式-以國小中高年級學生在四邊形概念之表現為例。測驗統計年刊,9,81-129。何縕琪、林清山 (1994) 。表徵策略教學對提升國小低解題正確率學生解題表現之效果研究。教育心理學報,27,259-279。余民寧、陳嘉成 (1998) 。排序理論在概念結構評量上的應用。國立政治大學學報,76,17-48。
吳昭容 (1990) 。圖示對國小學童解數學應用問題之影響。國立台灣大學心理學研究所博士班獨立研究,台北市。
吳柏林 (1996) 。社會科學研究中的模糊邏輯與模糊統計分析。中國統計通訊,7 (11) ,14-27。呂玉琴 (1997) 。國小低年級學生對加減法文字題的了解。載於中華民國第十三屆科學教育學術研討會會議手冊及短篇論文彙編 (頁355-361) 。台北市:中華民國科學教育學會。呂玉琴 (1994) 。國小教師分數教學之相關知識研究。國立台灣師範大學科學教育研究所博士論文,台北市。
呂玉琴譯 (1988) 。Thomas P. Carpenter著 (1985) 。加、減法文字題的分類、解題策略及影響因素。國民教育,28 (8,9) ,17-29。
李佳芸、林原宏 (2006) 。次序理論取向的機率問題之解題規則分析。中華民國第22屆科學教育學術研討會 (海報發表) (2006.12.15-16) 。台北市:國立台灣師範大學。
李靜瑤 (1994) 。高雄市國二學生數學解題歷程之分析研究。國立高雄師範大學數學教育研究所碩士論文,高雄市。周甘逢、劉冠麟 (合譯) (2002) 。Robert J. Sternberg & Wendy M. Williams著。教育心理學 (Educational Psychology) 。台北市:華騰。
周台傑、蔡宗玫 (1997) 。國小數學學習障礙學生應用問題解題之研究。特殊教育學報,12,233-292。
周筱亭 (1994) 。國民小學數學科新課程概說。台北縣:台灣省國民教師研習會。
林邦傑 (1981) 。集群分析及應用。教育與心理研究,4,31-57林炎旦 (1995) 。國民小學教師教學倦怠之研究。國民教育研究學報,1,57-84。林香、張英傑 (2004) 。國小數學資優生運用畫圖策略解題之探究。國立臺北師範學院學報,17 (2) ,1-22。
林奕宏 (2000) 。「多元智能與問題解決整合型教學模式」對國小學生數學學習表現之影響。國立台灣師範大學教育心理與輔導研究所碩士論文,台北市。林原宏 (1996a) 。集群分析之概念與理論。數理系刊,8,37-44。
林原宏 (1996b) 。知識結構分析—徑路搜尋、多向度量尺和集群分析的方法論探討。測驗統計年刊,4,47-69 。
林原宏 (1999) 。模糊集群分析法的探討。國立台中師範學院數學教育系系刊, 11,50-59。
林原宏 (2001) 。模糊語意變數量表計分之信度模擬分析。測驗統計年刊,9,193-219。林原宏 (2002) 。模糊語意變數的多準則評量之研究。國立台中師範學院學報,16,451-470。
林原宏 (2005a) 。次序理論。教育研究月刊,134,142-143。林原宏 (2005b) 。模糊集群。教育研究月刊,138,142-143。林原宏 (2006) 。解題規則次序分析方法及其實證研究。教育與心理研究,29 (3) ,599-619。
林原宏 (2007a) 。模糊理論在社會科學研究的方法論之回顧。量化研究學刊,1 (1) ,53-84。
林原宏 (2007b) 。廣義計分次序理論。教育研究月刊,154,151-154。林原宏、游森期 (2006) 。次序理論取向的解題規則階層分析及其結構圖比較之探究。測驗學刊,53,239-260。林原宏、黃美盼、易正明 (2007) 。徑路搜尋方法之加減法文字題知識結構分析。測驗統計年刊,15 (1) ,29-57。林原宏、黃國榮 (2003) 。模糊分割模式與軟體 (軟體及手冊)。台中市:台中教育大學。
林原宏、黃國榮 (2005) 。次序理論OT軟體 (軟體和說明) 。台中市:國立台中教育大學。
林原宏、黃雅婷 (2007) 。應用次序理論於平衡槓桿測驗之解題規則階層分析。國小數學認知與評量研討會 (2007.6.15) 。屏東市:屏東教育大學。
林能傑 (1995) 。南區新數學學生在二步驟文字題上的解題表現。屏東師範學院初等教育學系碩士班碩士論文,屏東市。林清山 (1985) 。群聚分析的理論和統計方法以及應用群聚分析的實徵性研究。中國測驗學會測驗年刊,32,155-180。林碧珍 (1989) 。國小學生數學解題的表現及其相關因素的研究。台北市國立臺灣師範大學數學研究所碩士論文,台北市。林碧珍 (1991) 。國小兒童對於乘除法應用問題之認知結構,新竹師院學報,5,211-288。邱志賢、毛國楠 (2001) 。國小六年級學童解未知數文字題之另類概念分析。台東師院學報,13 (下) ,23-60 。
施杏芬、林原宏 (2007) 。應用S-P表與廣義多元計分次序理論分析國小三年級「數與量」能力指標分年細目的階層次序性。2007第四屆測量統計方法學學術研討會暨台灣統計方法學學會年會 (2007.09.22) 。台北市:私立東吳大學。
徐村和、朱國明、詹惠君 (2000) 。模糊集群應用於信用卡市場區隔與消費者行為分析。臺大管理論叢,11 (1) ,133-162。翁嘉英 (1988) 。國小兒童解數學應用問題的認知歷程。國立台灣大學心理學研究所碩士論文,台北市。袁建中、王建彬、邱華凱、曾國雄 (2005) 。利用模糊集群分析建構臺灣機械產業永續發展之最佳策略組合。管理研究學報,5 (2) ,253-282。涂金堂 (1996) 。數學解題之探討。研習資訊,13 (2) ,60-63。
涂金堂 (1999) 。國小學生數學解題歷程之分析研究。初等教育學刊,7,295-332。
秦麗花 (1995) 。國小數學學障兒童數學解題錯誤類型分析。特殊教育季刊,55,33-38。梅文慧 (2003) 。國小三年級數學學習困難學生加減法算式填充題錯誤類型分析之研究。科學教育研究與發展2005年專刊,87-109。
國民學校教師研習會 (2000) 。國小數學教材分析—數的乘除運算。台北縣:教育部臺灣省國民學校教師研習會。
國立台灣師範大學科學教育中心 (1984) 。各國數學及自然科學課程研究。台北市︰國立編譯館。
張子貴、周君彥 (2001) 。師範學院普通數學教材 (上) 。台北市:五南。
張再明 (1994) 。國小兒童問題結構認知能力及其相關因素之探討研究。嘉義師院學報,8,1-56。張春興 (1997) 。教育心理學-三化取向的理論與實踐。台北市:東華。
張健邦 (1993) 。應用多變量分析。台北市:文富。
張淑怡 (1995) 。加減問題解題活動類型-一個國小低年級兒童的個案研究。國立高雄師範大學數學教育研究所碩士論文,高雄市。張景媛 (1994) 。數學文字題錯誤概念分析及學生建構數學概念的研究。教育心理學報,27,175-200。張鈿富、孫慶珉 (1993) 。學習評量與模糊模式之分析。國立政治大學學報,67,57-74。張燕滿 (2004) 。國小二年級學生加減法數學問題錯誤分析與補救教學策略。國教輔導,44 (1) ,46-49。教育部 (1993) 。國民小學課程標準。台北市:教育部。
教育部 (1999) 。國民教育九年一貫課程暫行綱要。台北市:教育部。
教育部 (2000) 。基本能力實踐策略專題研究報告 (第三章,第十一節:獨立思考與解決問題) 。台北市:教育部。
教育部 (2001) 。九年一貫課程暫行綱要數學學習領域。台北市:教育部。
教育部 (2002) 。創造力教育白皮書。台北市:教育部。
教育部 (2003) 。國民中小學九年一貫課程綱要數學學習領域。台北市:教育部。
許琇皙 (1999) 。國小低年級師生在加減法圖形表徵的認知對照。國立中正大學教育學研究所碩士論文,嘉義縣。許惠芳、施杏芬、林原宏 (2007) 。應用S-P表與多元計分次序理論分析國小二年級數與量分年細目之概念階層與次序性。2007海峽兩岸應用統計學術研討會 (2007.11.18) 。台北縣:輔仁大學。
陳英豪 (2007) 。影響資優生數學解題能力之重要因素探討。網路社會學通訊期刊,61。2008年3月22日,取自http://mail.nhu.edu.tw/~society/e-j/61/index.htm
陳敏彥、林原宏 (2007) 。結合模糊集群、S-P表與多元計分次序理論於國小學童數學認知診斷之分析。2007第四屆測量統計方法學學術研討會暨台灣統計方法學學會年會 (2007.09.22) 。台北市:私立東吳大學。
傅健忠、劉天翔、林原宏 (2007) 。應用多元計分次序理論於國小低年級整數四則運算問題的能力指標試題階層結構分析。2007海峽兩岸應用統計學術研討會 (2007.11.18) 。台北縣:輔仁大學。
游嵐妮、林原宏 (2007) 。多元計分次序理論應用於扯鈴教學評量之研究。2007第四屆測量統計方法學學術研討會暨台灣統計方法學學會年會 (2007.09.22) 。台北市:私立東吳大學。
程景琳(2006) 。國小學生理解與解答分數概念之相關因素探討─認知發展歷程之縱貫分析。行政院國家科學委員會專題研究計畫成果報告(NSC94-2521-S-003-014) ,未出版。
馮國臣 (2007) 。模糊理論:基礎與應用。台北縣:新文京開發。
黃家杰、梁淑坤 (2007) 。小學一般智能資優資源班新生數學解題歷程與策略之分析。台灣數學教師電子期刊,12,1-16。2008年3月10日,取自http://www.math.ntnu.edu.tw/~tame/index.htm
黃俊英 (1984) 。集群分析及其應用。企銀季刊,8 (7) ,15-25。
黃敏晃 (1994) 。國民小學數學新課程之精神。載於國民小學數學新課程概說 (頁1-17 ) 。台北縣:台灣省國民教師研習會。
黃馨瑩、王士信、林原宏 (2007) 。整合模糊集群與多元計分次序理論於六年級學童植物繁殖概念的知識結構。2007海峽兩岸應用統計學術研討會 (2007.11.18) 。台北縣:輔仁大學。
黃馨瑩、林原宏、莊曜遠 (2007a) 。應用混合計分次序理論探討五年級學童容量概念的知識結構。國小數學認知與評量研討會 (2007.6.15) 。屏東市:屏東教育大學。
黃馨瑩、林原宏、莊曜遠 (2007b) 。整合集群分析與多元計分次序理論於五年級學童容量概念的知識結構。2007第四屆測量統計方法學學術研討會暨台灣統計方法學學會年會 (2007.09.22) 。台北市:私立東吳大學。
甯自強 (1993) 。兩步驟的問題。教師之友,34 (2) ,45-49。
甯自強 (1994) 。五個區分對數與計算教材設計的影響。八十三學年度國民小學新課程數學科研討會論文暨會議實錄專輯 (頁63-90) 。台北縣:台灣省國民教師研習會。
楊弢亮 (1992) 。中學數學教學法通論。台北市︰九章。
楊美伶、蔣治邦 (1992) 。國民小學數學科加減法教材關鍵字之分析研究。國教學報,4,109-128。楊敏生 (1994) 。模糊理論簡介。數學傳播季刊,18 (1) ,4-10。溫亦剛主編 (1990) 。怎樣學好數學。台北市︰九鼎。
劉貞宜 (2001) 。數學資優生的解題歷程分析—以建中三位不同能力的數學資優生為例。資優教育研究,2 (1) ,97-120。
劉湘川、許天維、林原宏 (1998) 。知識空間的模糊理論分析。測驗統計年刊,6, 113-162。劉湘川、許天維、黃孝雲 (1998) 。改良式懲罰性模糊集群分析法之研究。測驗統計年刊,6,163-215。劉毅興 (1991) 。國小兒童解數學應用問題的策略。國立台灣大學心理學研究所碩士論文,台北市。
蔣治邦 (2001) 。中年級學童「部分-全體」運思的發展:文字題圖選與解題作業表現的差異。中華心理學刊,43,239-254。蔣治邦、鍾思嘉 (1991) 。低年級學童加減概念的發展。國立政治大學教育與心理研究,14,35-68。鄧振源、李名昌、曾國雄 (1993) 。我國交通違規記點制度改善之研究。載於中華民國第一屆Fuzzy理論與應用研討會論文集 (頁118-126)。新竹市:國立清華大學。
蔡榮貴 (1990) 。國小教師如何利用結果/過程的技術來診斷學生數學上的錯誤。嘉義師院學報,4,113-123。
鄭博信、詹勳國、劉曼麗、王瑋樺 (2000) 。數學學習障礙學生解題與錯誤類型之研究。載於八十九學年度師範院校教育學術論文發表會論文集 (頁571-595) 。新竹市:國立新竹師範學院。
鄭惠萍 (2006) 。國小三年級學童在比較型加減文字題的解題表現及錯誤類型之研究—以屏東地區為例。國立屏東教育大學數理教育研究所碩士論文,屏東市。鄭雅雯、胡啟有、林原宏 (2007) 。應用多元計分次序理論於國小低年級加減法文字題的試題階層結構分析。國小數學認知與評量研討會 (2007.6.15) 。屏東市:屏東教育大學。
蕭見文 (1996) 。數學解題策略教學之研究。教育學刊,12,367-399。謝淡宜 (1998) 。小學五年級數學資優生與普通生數學解題時思考歷程之比較。臺南師院學報,31,225-268。謝淡宜 (1999) 。小學四年級數學資優生和普通生數學解題思考歷程之比較。台南師院學報,32,297-367。
簡茂發、劉湘川 (1992) 。模糊綜合評判法及其在教學觀摩評鑑上之應用。測驗年刊,39,269-283。台北市:中國測驗學會。簡敏娥 (2006) 。探討影響國小二年級漢原族群學童的加減運算學習成就之因素及其解題錯誤類型之分析。國立屏東教育大學數理教育研究所碩士論文,屏東市。藎壚 (1991) 。實用模糊數學。台北市:亞東。
羅素貞 (1996) 。問題表徵與問題解決。屏東師院學報,9,149-176。羅積玉 (1990) 。多元統計分析方法與應用。台北市:科技。
二、英文部分
Airasian, P. W., & Bart, W. M. (1973). Ordering theory: A new and useful measurement model. Educational Technology, May, 56-60.
Airasian, P. W., Bart, W. M., & Greaney, B. J. (1975). The analysis of a propositional logic game by ordering theory. Child Study Journal, 5, 13-24.
Anand, P. G., & Ross, S. M. (1987). Using computer-assisted instruction topersonalize arithmetic materials for elementary school children. Journal of Educational Psychology, 79, 72-78.
Babbitt, B. C. (1990). Errors and Pattern in Problem. (ERIC Document Reproduction Science No.ED 338500)
Baroody, A. J. (1998). Fostering Children’s Mathematical Power: An Investigative Approach to K-8 Mathematics Instruction. Hillsdale, NJ: Lawarence Erlbaum.
Bart, W. M., & Krus, D. J. (1973). An ordering-theoretic method to determine hierarchies among items. Educational and Psychological Measurement, 33, 291-300.
Bart, W. M. (1971). A generalization of Piaget’s logical-mathematical model for thestage of formal operations. Journal of Mathematical Psychology, 8, 539-553.
Bart, W. M., & Airasian, P. W. (1974). Determination of the ordering among seven Piagetian tasks by an ordering-theoretic method. Journal of Educational Psychology, 66, 277-284.
Bart, W. M., Frey, S., & Baxter, J. (1979). Generalizability of the ordering among five formal reasoning tasks by an ordering-theoretic method. Child Study Journal, 9, 251-259.
Bart,W. M., & Krus, D. J. (1973). An ordering-theoretic method to determine hierarchies among items. Educational and Psychological Measurement, 33, 291-300.
Bart, W. M., & Mertens, D. M. (1979). The hierarchical structure of formal operational tasks. Applied Psychological Measurement, 3, 343-350.
Bart, W. M., & Read, S. A. (1984). A statistical test model for prerequisite relations. Educational and Psychological Measurement, 44, 223-227.
Bezdek, J. C. (1973). Fuzzy Mathematics in Pattern Classification. Unpublished doctoral dissertation, Cornell University, Ithaca.
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum.
Bezdek, J. C., Hathaway, R. J., & Huggins, V. J. (1985). Parametric estimation for normal mixtures. Pattern Recognition Lett., 3, 79-84.
Buckley, J. J., & Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets. Heidelberg: Physica-Verlag.
Campione, J. C., Brown, A. L., & Connell, M. L. (1989). Metacognition: On the importance of understanding what you are doing. In R. I. Charles & E. A. Silver (Eds.), The Teaching and Assessing of Mathematical Problem Solving (pp. 93-114). Hillsdale, NJ: Erlbaum Publishing company.
Carpenter, T. P. (1981). Initial instruction in addition and subtraction: A target of opportunity for curriculum development. Paper presented at proceedings of the National Science Foundation Director’s Meeting. Washington, DC.
Carpenter, T. P. (1985). Learning to add and subtract: An exercise in problem solving. In E. A. Silver (Ed.), Teaching and Learning Mathematics Problem Solving: Multiple Research Perspectives (pp. 17-40). Hillsdale, NJ: Lawarence Erlbaum.
Carpenter, T. P., & Moser, J. M. (1983). The acquisition of addition and subtraction concepts. In R. Lesh & M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes. New York: Academic.
Carpenter, T. P., Corbitt, M. K., Kepner, H. S., Lindquist, M. M., & Reys, R. E. (1981). National assessment. In E. Fennema (Ed.), Mathematics Education Research : Implications for the 80’s (pp. 22-38). Reston, VA: National Council of Teachers of Mathematics.
Davenport, J. W., Pierce, M. A., & Hathaway, R. J. (1988). A numerical comparison of EM and puasi-Newton type algorithms for computing MLE’s for a mixture of normal distributions. Computer Science and Statistics, 20, 410-415.
Davis, E. J., & Cooney, T. J. (1977). Identifying errors in solving certain linear equations. MATYC Journal, 11, 170-176.
De Corte, E., & Verschaffel, L. (1991). Some factors influencing the solution of addition and subtraction word problems. In K. Durkin and B. Shrie (Eds.), Language in Mathematical Education (pp. 117-130). London: Open University.
Dossey, J. A., Mullis, I. VS., Lindquist, M. M., & Chambers, D. L. (1988). The Mathematics Report Card: Are We Measuring Up? Princeton, NJ: Educational Testing Service.
Everitt, B. S. (1993). Cluster Analysis. New York: John Wiley & Sons.
Ferrari, M., & Sternberg, R. J. (1998). The development of mental abilities and styles. In D. Kuhn & R. S. Siegler (Eds.), & W. Damon (Series Ed.), Handbook of Child Psychology: Vol. 2: Cognition, Perception, and Language (5th ed.) (pp. 899-946). New York: Wiley.
Fu, G. (1998). Optimization methods for fuzzy clustering. Fuzzy Sets and Systems, 93, 301-309.
Fuson, K. C. (1992). Research on whole number addition and subtraction. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 243-275). New York:Macmillan.
Garcia, A. I., Jimenez, J. E., & Hess, S. (2006). Solving arithmetic word problems: An analysis of classification as a function of difficulty in children with and without arithmetic LD. Journal of Learning Disabilities, 39 (3), 270-281.
Garofalo, J., & Mtetwa, D. K. (1990). Implementing the standards: Mathematics as reasoning. Arithmetic Teacher, 37 (5), 16-18.
Gath, I., & Geva, A. B. (1989). Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 773-781.
Gibb, E. G. (1956). Children’s thinking in the process of subtraction. Journal of Experimental Education, 25, 71-80.
Ginsburg, H. P., & Opper, S. (1979). Piaget’s Theory of Intellectual Development. NJ: Prentice-Hall.
Goldin, G. A. (1992). Meta-analyses of problem solving studies: A critical response. Journal for Research in Mathematics education, 7, 272-283.
Goos, M. (2000). Understanding matecognitive failure. Journal of Mathematical Behavior, 21, 283-302.
Guttman, L. (1944). A basis for scaling qualitative data. American Sociological Review, 9, 139-150.
Guttman, L. (1950). The basis for scalogram analysis. In S. A. Stouffer, L. A. Guttman, F. A. Suchman, P. F. Lazarsfeld, S. A. Star, & J. A. Clausen (Eds.), Measurement and Prediction. The American Soldier Vol. IV. (pp. 60-90). New York: Wiley.
Hart, D. (1994). Authentic Assessment: A Handbook for Educator. New York: Addison.
Hayes, S. C. (1989). Rule-governed Behavior: Cognition, Contingencies, and Instructional Control. New York: Plenum.
Hecht, S. A. (1998). Toward an information-processing account of individual differences in fraction skills. Journal of Educational Psychology, 90, 545-559.
Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87, 18-32.
Hesketh, B., Pryor, R., Gleitzman, M., & Hesketh, T. (1988). Practical applications and psychometric evaluation of a computerized fuzzy graphic ration scale. In T. Zetenyi (Ed.), Fuzzy Sets in Psychology (pp. 425-454). New York: North-Holland.
Hudson, T. (1983). Correspondences and numerical differences between disjoint sets. Child Development, 54, 84-90.
Jansson, L. C. (1986). Logical reasoning hierarchies in mathematics. Journal for Research in Mathematics Education, 17 (1), 3-20.
Johnson, R. A., & Wichen, D. W. (1992). Applied Multivariate Statistical Analysis (3nd ed.). Englewood Cliffs, NJ: Prentice-Hall.
Kaput, J. (1985). Representation and problem solving: Methodological issues related to modeling. In E. A. Silver (Ed.), Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives (pp. 381-398). Hillsdale, NJ: Lawrence Erlbaum.
Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York: John Wiley & Sons.
Kieran, C. (1984). A comparison between novice and more- expert algebra students on tasks dealing with the equivalence of equations. In J. M. Moser (Ed.), Proceedings of Sixth Annual Meeting of Psychology of Mathematics Education in North America (pp. 83-91). Madison, Wisconsin: University of Wisconsin.
Kilpatrick, J. (1967). Analyzing the solution of word problems in mathematics: An exploratory study. Dissertation Abstracts International, 28 (11), 4380A.
Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92, 109-129.
Leski, J. (2003). Towards a robust fuzzy clustering. Fuzzy Sets and Systems, 137, 215-233.
Lin, P. (1997). Children’s Cognitive Processes in Solving Two-step Compare Word Problems. Unpublished dissertation, University of Minnesota, Minnesota.
Lin, Y. H., Bart, W. M., & Huang, K. J. (2006). WPOT software [manual and software for generalized ordering theory]. Taiwan, Taichung City: National Taichung University.
Lowrie, T., & Clements, M. A. (2001) . Visual and nonvisual processes in grade 6 students' mathematical problem solving. Journal of Research in Childhood Education, 16 (1), 77-93.
Lowrie, T., & Kay, R. (2001). Relationship between visual and nonvisual solution methods and difficulty in elementary mathematics. The Journal of Educational Research, 94 (4), 248-255.
Marshall, S. P., Pribe, C. A., & Smith, J. D. (1987). Schema Knowledge Structure for Representing and Understanding Arithmetic Story Problems. (Tech. Rep. Contract No. N00014-85-k-0661) Arlington, VA: Office of Naval Research.
Martorano, S. (1977). A developmental analysis of performance on Piaget's formal 135 operations tasks. Developmental Psychology, 13, 666-672.
Mayer, R. E. (1987). Educational Psychology: A Cognitive Approach. Boston, NY: Little, Brown and Company.
Mayer, R. E. (1989). Systematic thinking fostered by illustrations in scientific text. Journal of Educational Psychology, 81 (2), 240-246.
Mayer, R. E. (1992). Thinking, Problem Solving, and Cognition. New York: W. H. Freeman Company.
National Council of Teachers of Mathematics (NCTM) (1989). Curricalum and Ealuation Standards for School Mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics (NCTM) (2000). Principles and Standards for Sschool Mathematics. Reston, VA: NCTM.
Nesher, P., & Hershkovitz, S. (1994). The role of schemes in two-step problems analysis and research findings. Educational Studies in Mathematics, 26, 1-23.
Newell, A., & Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
Nguyen, J. C., & Wu, B. (2006). Fundamentals of Statistics with Fuzzy Data. New York: Springer.
Orloci, L. (1967). An agglomerative method for classification of plant communities. Journal of Ecology, 55, 193 -206.
Perdikaris, S. C. (1996). Mathematizing the van Hiele levels: A fuzzy set approach. International Journal of Mathematical Education in Science and Technology, 27, 41-47.
Piaget, J. (1952). The Children’s Conception of Number. (C. Cattegno, & F. M. Hodgson, Trans.). New York: reprinted 1997 by Routledge. (Original work published 1941)
Piaget, J. (1953). How children form mathematical concept. Scientific American, 189 (5), 74-79.
Polya, G. (1945). How to Solve It (2nd ed.). NY: Doubleday.
Polya, G. (1971). How to Solve It: A New Aspect of Mathematical Method (2nd ed.). Princeton, NJ: Princeton University.
Punj, G., & Stewart D.W. (1983). Cluster analysis in marketing research: review and suggestions for application. Journal of Marketing Research, 20, 134-148.
Ragin, C. C. (2000). Fuzzy Set Social Sscience. Chicago: The University of Chicago.
Riley, M. S. (1981). Conceptual and Procedural Knowledge in Development. Unpublished master’s thesis, University of Pittsburgh, Oakland .
Riley, M. S., Greeno, J. G., & Heller, J. I. (1983). Development of children’s problem solving ability in arithmetic. In H. P. Ginsberg (Eds.). The Development of Mathematical Thinking (pp. 153-196). San Diego, CA: Academic.
Schoenfeld, A. H. (1985). Mathematical Problem Solving. New York: Academic.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem-solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 334-370). New York: Macmillan.
Silver, E. A. (1987). Foundations of cognitive theory and research for mathematics problem-solving instruction. In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (pp.33-60). Hillsdale, NJ: Lawrence Erlbaum.
Sriraman B. (2003). Mathematical giftedness, problem solving, and the ability to formulate generalizations: The problem-solving experiences of four gifted students. The Journal of Secondary Gifted Education, 3 (14), 151-165.
Steinberg. R. M., Sleeman. D. H., & Ktorza. D. (1990). Transformations in high school algebra. Journal for Research in Mathematics Education, 22, 112-121.
Stern, E. (1993). What makes certain arithmetic word problems involving the comparison of sets so difficult for children. Journal of Educational Psychology, 85, 7-23.
Takeya, M. (1999). Structure Analysis Methods for Instruction: Theory and Practice of Instructional Architecture, Design and Evaluation. Hachioji, Tokyo: Takushoku University.
Verschaffel, L., De Corte, E., & Pauwels, A. (1992). Solving compare problems: An eye-movement test of Lewis and Mayer’s consistency hypothesis. Journal of Educational Psychology, 84, 85-94.
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.
Webb, Norman. L. (1975). An Exploration of Mathematical Problem Solving Processes. (ERIC Document Reproduction Service No. ED106148)
Willis, G. B., & Fuson, K. C. (1988). Teaching children to use schematic drawing to solve addition and subtraction word problems. Journal of Educational Psychology, 80, 192-201.
Yang, M. S. (1993a). On a class of fuzzy classification maximum likelihood procedures. Fuzzy Sets and Systems, 57, 365-375.
Yang, M. S. (1993b). Convergence properties of the generalized fuzzy c-means clustering algorithms. Computers and Mathematics with Applications, 25 (12), 3-11.
Yang, M. S., & Shih, H. M. (2001). Clustering analysis based on fuzzy relations. Fuzzy Sets and Systems, 120, 197-212.
Yang, M. S., & Wu, K. L. (2004). A similarity-based robust clustering method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 434-448.
Yang, M. S., & Wu, K. L. (2006). Unsupervised possibilistic clustering. Pattern Recognition, 39, 5-21.
Yen, K. K., Ghoshray, S., & Roig, G. (1999). A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems, 106, 167-177.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.