跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃書毓
研究生(外文):Shu-Yu Huang
論文名稱:前骨髓性細胞白血病蛋白的結構和分子交互作用機制
論文名稱(外文):Structural Characterization and Molecular Interaction with the TRIM Domains of Promyelocytic Leukemia Protein
指導教授:黃太煌黃太煌引用關係
指導教授(外文):Tai-Huang Huang
口試委員:施修明陳金榜蘇士哲
口試委員(外文):Hsiu-Ming ShihChin-Pan ChenShih-Che Sue
口試日期:2015-01-16
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:99
中文關鍵詞:PMLTRIM/RBCCRING fingerB-box 1SUMO
外文關鍵詞:PMLTRIM/RBCCRING fingerB-box 1SUMO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
PML protein is mainly present inside the nucleus in the form of PML nuclear bodies (PML-NBs) and serves as a SUMO E3 ligase which facilitates SUMOylation on PML itself and proteins in PML-NBs. PML has a conserved N-terminal TRIM/RBCC region comprised of a RING finger domain, two B-boxes and a coiled-coil region. The purpose of this study is to investigate the structural basis of SUMOylation on PML TRIM domains which is essential in the formation of PML-NBs. However, not much of the structural information of PML is known today. In this work we solved the structures of RING finger and B-box 1 of dimer by advanced NMR techniques. We identified the residues involved in the binding of SUMO E2 enzyme Ubc9 and PML TRIM domains. The result of SPR indicated that dimeric domain RB1 showed much stronger interaction with Ubc9 (KD=16uM) than any single domain (KD=490uM for RING finger and KD=94uM for B-box 1), suggesting that RING finger and B-box 1 bound with Ubc9 in synergy. Here, we provide the structures of PML TRIM domains and the bindings with Ubc9 at molecular level in order to understand the SUMOylation mechanism on PML TRIM domains.

Table of Contents

Verification letter from the Oral Examination Committee i
Acknowledgements ii
Chinese Abstract iii
English Abstract iv
List of Figures vii
List of Tables viii
List of Abbreviations ix

Chapter 1: Introduction
1.1 PML and the PML-Nuclear Body 1
1.2 SUMOylation drives PML-NB formation 2
1.3 PML TRIM/RBCC domains 4

Chapter 2: Materials and Methods
2.1 Cloning, Expression, and Protein Purification 8
2.2 NMR Spectroscopy 10
2.3 NMR Structure Determination 11
2.4 Analysis of Protein Dynamics by NMR 12
2.5 Residual dipolar couplings (RDC) measurement 13
2.6 Hydrogen-deuterium exchange experiment 14
2.7 Mapping of protein-protein interaction site by NMR chemical shift perturbation (CSP) 15
2.8 Circular Dichroism (CD) measurement 15
2.9 Surface Plasmon Resonance (SPR) assay 16
2.10 Small Angle X-ray Scattering (SAXS) measurement 16

Chapter 3: Results
3.1 PML Domains Architecture and Sequence Alignment 18
3.2 Solution Structure of RING Finger 20
3.3 Dynamics analysis of RING Finger 24
3.4 Concentration dependence of B-box 1 dimerization 25
3.5 Solution Structure of B-box 1 26
3.6 Dynamics analysis of B-box 1 29
3.7 SAXS for PML Domains and Ubc9 32
3.8 Linker between RING Finger and B-box 1 33
3.9 Mapping the interaction sites of PML domains on Ubc9 35
3.10 Mapping the interaction site of Ubc9 on PML domains 37
3.11 SPR quantification of the Ubc9 binding affinity with PML domains 40
3.12 HADDOCK model of the complex 41

Chapter 4: Discussion 43

Chapter 5: Conclusion and Future Plan 50
References 94
Publications

References:

1.de The, H., et al., The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell, 1991. 66(4): p. 675-84.
2.Goddard, A.D., et al., Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science, 1991. 254(5036): p. 1371-4.
3.Kastner, P., et al., Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J, 1992. 11(2): p. 629-42.
4.Hodges, M., et al., Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am J Hum Genet, 1998. 63(2): p. 297-304.
5.Sternsdorf, T., et al., Nuclear dots: actors on many stages. Immunobiology, 1997. 198(1-3): p. 307-31.
6.Zhong, S., P. Salomoni, and P.P. Pandolfi, The transcriptional role of PML and the nuclear body. Nat Cell Biol, 2000. 2(5): p. E85-90.
7.Wang, Z.G., et al., PML is essential for multiple apoptotic pathways. Nat Genet, 1998. 20(3): p. 266-72.
8.Jensen, K., C. Shiels, and P.S. Freemont, PML protein isoforms and the RBCC/TRIM motif. Oncogene, 2001. 20(49): p. 7223-33.
9.Condemine, W., et al., Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res, 2006. 66(12): p. 6192-8.
10.Reymond, A., et al., The tripartite motif family identifies cell compartments. EMBO J, 2001. 20(9): p. 2140-51.
11.Duprez, E., et al., SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci, 1999. 112 ( Pt 3): p. 381-93.
12.Ishov, A.M., et al., PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol, 1999. 147(2): p. 221-34.
13.Zhong, S., et al., Role of SUMO-1-modified PML in nuclear body formation. Blood, 2000. 95(9): p. 2748-52.
14.Chu, Y. and X. Yang, SUMO E3 ligase activity of TRIM proteins. Oncogene, 2011. 30(9): p. 1108-1116.
15.Heun, P., SUMOrganization of the nucleus. Curr Opin Cell Biol, 2007. 19(3): p. 350-5.
16.Shen, T.H., et al., The mechanisms of PML-nuclear body formation. Mol Cell, 2006. 24(3): p. 331-9.
17.Dellaire, G., et al., Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. J Cell Sci, 2006. 119(Pt 6): p. 1034-42.
18.Zhang, X.W., et al., Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 2010. 328(5975): p. 240-3.
19.Lallemand-Breitenbach, V., et al., Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol, 2008. 10(5): p. 547-55.
20.Tatham, M.H., et al., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol, 2008. 10(5): p. 538-46.
21.Sardiello, M., et al., Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol Biol, 2008. 8: p. 225.
22.Ozato, K., et al., TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol, 2008. 8(11): p. 849-60.
23.Meroni, G. and G. Diez-Roux, TRIM/RBCC, a novel class of ''single protein RING finger'' E3 ubiquitin ligases. Bioessays, 2005. 27(11): p. 1147-1157.
24.Bernardi, R. and P.P. Pandolfi, Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol, 2007. 8(12): p. 1006-16.
25.Freemont, P.S., I.M. Hanson, and J. Trowsdale, A novel cysteine-rich sequence motif. Cell, 1991. 64(3): p. 483-4.
26.Borden, K.L., et al., The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J, 1995. 14(7): p. 1532-41.
27.Freemont, P.S., RING for destruction? Curr Biol, 2000. 10(2): p. R84-7.
28.Joazeiro, C.A., et al., The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 1999. 286(5438): p. 309-12.
29.Lorick, K.L., et al., RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11364-9.
30.Urano, T., et al., Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature, 2002. 417(6891): p. 871-5.
31.Zhang, Y. and Y. Xiong, Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ, 2001. 12(4): p. 175-86.
32.Boddy, M.N., et al., Surface residue mutations of the PML RING finger domain alter the formation of nuclear matrix-associated PML bodies. J Cell Sci, 1997. 110 ( Pt 18): p. 2197-205.
33.Torok, M. and L.D. Etkin, Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation, 2001. 67(3): p. 63-71.
34.Borden, K.L., et al., Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development. EMBO J, 1995. 14(23): p. 5947-56.
35.Cao, T., et al., Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J Cell Sci, 1997. 110 ( Pt 14): p. 1563-71.
36.Borden, K.L., et al., In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci U S A, 1996. 93(4): p. 1601-6.
37.Percherancier, Y., et al., Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. J Biol Chem, 2009. 284(24): p. 16595-608.
38.Lupas, A., Coiled coils: new structures and new functions. Trends Biochem Sci, 1996. 21(10): p. 375-82.
39.Grigoryan, G. and A.E. Keating, Structural specificity in coiled-coil interactions. Curr Opin Struct Biol, 2008. 18(4): p. 477-83.
40.Grignani, F., et al., Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J, 1996. 15(18): p. 4949-58.
41.Le, X.F., P. Yang, and K.S. Chang, Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem, 1996. 271(1): p. 130-5.
42.Fagioli, M., et al., Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene, 1998. 16(22): p. 2905-13.
43.Mrosek, M., et al., Structural analysis of B-Box 2 from MuRF1: identification of a novel self-association pattern in a RING-like fold. Biochemistry, 2008. 47(40): p. 10722-30.
44.Bodine, S.C. and L.M. Baehr, Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab, 2014. 307(6): p. E469-84.
45.Li, Y., et al., Structural insights into the TRIM family of ubiquitin E3 ligases. Cell Res, 2014. 24(6): p. 762-5.
46.Markley, J.L., et al., Recommendations for the presentation of NMR structures of proteins and nucleic acids--IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. Eur J Biochem, 1998. 256(1): p. 1-15.
47.Zwahlen, C., et al., Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage lamda N-Peptide/boxB RNA Complex. J. Am. Chem. Soc., 1997. 119(29): p. 6711-6721.
48.Cornilescu, G., F. Delaglio, and A. Bax, Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Journal of Biomolecular NMR, 1999. 13(3): p. 289-302.
49.Wishart, D.S. and B.D. Sykes, Chemical shifts as a tool for structure determination. Methods Enzymol, 1994. 239: p. 363-92.
50.Guntert, P., Automated NMR structure calculation with CYANA. Methods Mol Biol, 2004. 278: p. 353-78.
51.Schwieters, C.D., et al., The Xplor-NIH NMR molecular structure determination package. Journal of Magnetic Resonance, 2003. 160(1): p. 65-73.
52.Koradi, R., M. Billeter, and K. Wuthrich, MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics, 1996. 14: p. 51-55.
53.Laskowski, R.A., et al., AQUA and PROCHECK - NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J. Biomol. NMR, 1996. 8: p. 477-486.
54.Kay, L.E., Nicholson, L., Delaglio, F., Bax, A., and Torchia, D., Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J Magn Reson, 1992. 97: p. 39-375.
55.Farrow, N.A., et al., Spectral Density mapping using 15N relaxation data exclusively. J Biomol NMR, 1995. 6: p. 153-162.
56.Lefevre, J.F., et al., Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry, 1996. 35(8): p. 2674-86.
57.Ottiger, M., F. Delaglio, and A. Bax, Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson, 1998. 131(2): p. 373-8.
58.Wishart, D.S. and B.D. Sykes, The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR, 1994. 4(2): p. 171-80.
59.Schmidt, E. and P. Guntert, A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc, 2012. 134(30): p. 12817-29.
60.Reimer, U., et al., Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J Mol Biol, 1998. 279(2): p. 449-60.
61.Svergun, D.I., M.V. Petoukhov, and M.H. Koch, Determination of domain structure of proteins from X-ray solution scattering. Biophys J, 2001. 80(6): p. 2946-53.
62.Geourjon, C. and G. Deleage, SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995. 11(6): p. 681-4.
63.Garnier, J., J.F. Gibrat, and B. Robson, GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol, 1996. 266: p. 540-53.
64.Pollastri, G. and A. McLysaght, Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics, 2005. 21(8): p. 1719-20.
65.Whitmore, L. and B.A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers, 2008. 89(5): p. 392-400.
66.de Vries, S.J., M. van Dijk, and A.M. Bonvin, The HADDOCK web server for data-driven biomolecular docking. Nat Protoc, 2010. 5(5): p. 883-97.
67.Meroni, G., Genomics and evolution of the TRIM gene family. Adv Exp Med Biol, 2012. 770: p. 1-9.
68.Cammas, F., et al., Trim Involvement in Transcriptional Regulation. Trim/Rbcc Proteins, 2012. 770: p. 59-76.
69.Bernier-Villamor, V., et al., Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between Ubiquitin-Conjugating Enzyme Ubc9 and RanGAP1. Cell, 2002. 108(3): p. 345-356.
70.Tatham, M.H., et al., Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol, 2005. 12(1): p. 67-74.
71.Han, X.F., H.J. Du, and M.A. Massiah, Detection and Characterization of the In Vitro E3 Ligase Activity of the Human MID1 Protein. Journal of Molecular Biology, 2011. 407(4): p. 505-520.
72.Tatham, M.H., et al., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biology, 2008. 10(5): p. 538-546.
73.Yang, S., et al., PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol, 2002. 4(11): p. 865-70.
74.Sahin, U., et al., Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol, 2014. 204(6): p. 931-45.
75.Hatakeyama, S., TRIM proteins and cancer. Nat Rev Cancer, 2011. 11(11): p. 792-804.
76.Berjanskii, M.V., S. Neal, and D.S. Wishart, PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res, 2006. 34(Web Server issue): p. W63-9.
77.Giraud, M.F., J.M. Desterro, and J.H. Naismith, Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr D Biol Crystallogr, 1998. 54(Pt 5): p. 891-8.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top