|
References:
1.de The, H., et al., The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell, 1991. 66(4): p. 675-84. 2.Goddard, A.D., et al., Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science, 1991. 254(5036): p. 1371-4. 3.Kastner, P., et al., Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J, 1992. 11(2): p. 629-42. 4.Hodges, M., et al., Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am J Hum Genet, 1998. 63(2): p. 297-304. 5.Sternsdorf, T., et al., Nuclear dots: actors on many stages. Immunobiology, 1997. 198(1-3): p. 307-31. 6.Zhong, S., P. Salomoni, and P.P. Pandolfi, The transcriptional role of PML and the nuclear body. Nat Cell Biol, 2000. 2(5): p. E85-90. 7.Wang, Z.G., et al., PML is essential for multiple apoptotic pathways. Nat Genet, 1998. 20(3): p. 266-72. 8.Jensen, K., C. Shiels, and P.S. Freemont, PML protein isoforms and the RBCC/TRIM motif. Oncogene, 2001. 20(49): p. 7223-33. 9.Condemine, W., et al., Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res, 2006. 66(12): p. 6192-8. 10.Reymond, A., et al., The tripartite motif family identifies cell compartments. EMBO J, 2001. 20(9): p. 2140-51. 11.Duprez, E., et al., SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci, 1999. 112 ( Pt 3): p. 381-93. 12.Ishov, A.M., et al., PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol, 1999. 147(2): p. 221-34. 13.Zhong, S., et al., Role of SUMO-1-modified PML in nuclear body formation. Blood, 2000. 95(9): p. 2748-52. 14.Chu, Y. and X. Yang, SUMO E3 ligase activity of TRIM proteins. Oncogene, 2011. 30(9): p. 1108-1116. 15.Heun, P., SUMOrganization of the nucleus. Curr Opin Cell Biol, 2007. 19(3): p. 350-5. 16.Shen, T.H., et al., The mechanisms of PML-nuclear body formation. Mol Cell, 2006. 24(3): p. 331-9. 17.Dellaire, G., et al., Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. J Cell Sci, 2006. 119(Pt 6): p. 1034-42. 18.Zhang, X.W., et al., Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 2010. 328(5975): p. 240-3. 19.Lallemand-Breitenbach, V., et al., Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol, 2008. 10(5): p. 547-55. 20.Tatham, M.H., et al., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol, 2008. 10(5): p. 538-46. 21.Sardiello, M., et al., Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol Biol, 2008. 8: p. 225. 22.Ozato, K., et al., TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol, 2008. 8(11): p. 849-60. 23.Meroni, G. and G. Diez-Roux, TRIM/RBCC, a novel class of ''single protein RING finger'' E3 ubiquitin ligases. Bioessays, 2005. 27(11): p. 1147-1157. 24.Bernardi, R. and P.P. Pandolfi, Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol, 2007. 8(12): p. 1006-16. 25.Freemont, P.S., I.M. Hanson, and J. Trowsdale, A novel cysteine-rich sequence motif. Cell, 1991. 64(3): p. 483-4. 26.Borden, K.L., et al., The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J, 1995. 14(7): p. 1532-41. 27.Freemont, P.S., RING for destruction? Curr Biol, 2000. 10(2): p. R84-7. 28.Joazeiro, C.A., et al., The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 1999. 286(5438): p. 309-12. 29.Lorick, K.L., et al., RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11364-9. 30.Urano, T., et al., Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature, 2002. 417(6891): p. 871-5. 31.Zhang, Y. and Y. Xiong, Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ, 2001. 12(4): p. 175-86. 32.Boddy, M.N., et al., Surface residue mutations of the PML RING finger domain alter the formation of nuclear matrix-associated PML bodies. J Cell Sci, 1997. 110 ( Pt 18): p. 2197-205. 33.Torok, M. and L.D. Etkin, Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation, 2001. 67(3): p. 63-71. 34.Borden, K.L., et al., Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development. EMBO J, 1995. 14(23): p. 5947-56. 35.Cao, T., et al., Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J Cell Sci, 1997. 110 ( Pt 14): p. 1563-71. 36.Borden, K.L., et al., In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci U S A, 1996. 93(4): p. 1601-6. 37.Percherancier, Y., et al., Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. J Biol Chem, 2009. 284(24): p. 16595-608. 38.Lupas, A., Coiled coils: new structures and new functions. Trends Biochem Sci, 1996. 21(10): p. 375-82. 39.Grigoryan, G. and A.E. Keating, Structural specificity in coiled-coil interactions. Curr Opin Struct Biol, 2008. 18(4): p. 477-83. 40.Grignani, F., et al., Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J, 1996. 15(18): p. 4949-58. 41.Le, X.F., P. Yang, and K.S. Chang, Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem, 1996. 271(1): p. 130-5. 42.Fagioli, M., et al., Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene, 1998. 16(22): p. 2905-13. 43.Mrosek, M., et al., Structural analysis of B-Box 2 from MuRF1: identification of a novel self-association pattern in a RING-like fold. Biochemistry, 2008. 47(40): p. 10722-30. 44.Bodine, S.C. and L.M. Baehr, Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab, 2014. 307(6): p. E469-84. 45.Li, Y., et al., Structural insights into the TRIM family of ubiquitin E3 ligases. Cell Res, 2014. 24(6): p. 762-5. 46.Markley, J.L., et al., Recommendations for the presentation of NMR structures of proteins and nucleic acids--IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. Eur J Biochem, 1998. 256(1): p. 1-15. 47.Zwahlen, C., et al., Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage lamda N-Peptide/boxB RNA Complex. J. Am. Chem. Soc., 1997. 119(29): p. 6711-6721. 48.Cornilescu, G., F. Delaglio, and A. Bax, Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Journal of Biomolecular NMR, 1999. 13(3): p. 289-302. 49.Wishart, D.S. and B.D. Sykes, Chemical shifts as a tool for structure determination. Methods Enzymol, 1994. 239: p. 363-92. 50.Guntert, P., Automated NMR structure calculation with CYANA. Methods Mol Biol, 2004. 278: p. 353-78. 51.Schwieters, C.D., et al., The Xplor-NIH NMR molecular structure determination package. Journal of Magnetic Resonance, 2003. 160(1): p. 65-73. 52.Koradi, R., M. Billeter, and K. Wuthrich, MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics, 1996. 14: p. 51-55. 53.Laskowski, R.A., et al., AQUA and PROCHECK - NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J. Biomol. NMR, 1996. 8: p. 477-486. 54.Kay, L.E., Nicholson, L., Delaglio, F., Bax, A., and Torchia, D., Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J Magn Reson, 1992. 97: p. 39-375. 55.Farrow, N.A., et al., Spectral Density mapping using 15N relaxation data exclusively. J Biomol NMR, 1995. 6: p. 153-162. 56.Lefevre, J.F., et al., Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry, 1996. 35(8): p. 2674-86. 57.Ottiger, M., F. Delaglio, and A. Bax, Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson, 1998. 131(2): p. 373-8. 58.Wishart, D.S. and B.D. Sykes, The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR, 1994. 4(2): p. 171-80. 59.Schmidt, E. and P. Guntert, A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc, 2012. 134(30): p. 12817-29. 60.Reimer, U., et al., Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J Mol Biol, 1998. 279(2): p. 449-60. 61.Svergun, D.I., M.V. Petoukhov, and M.H. Koch, Determination of domain structure of proteins from X-ray solution scattering. Biophys J, 2001. 80(6): p. 2946-53. 62.Geourjon, C. and G. Deleage, SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995. 11(6): p. 681-4. 63.Garnier, J., J.F. Gibrat, and B. Robson, GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol, 1996. 266: p. 540-53. 64.Pollastri, G. and A. McLysaght, Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics, 2005. 21(8): p. 1719-20. 65.Whitmore, L. and B.A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers, 2008. 89(5): p. 392-400. 66.de Vries, S.J., M. van Dijk, and A.M. Bonvin, The HADDOCK web server for data-driven biomolecular docking. Nat Protoc, 2010. 5(5): p. 883-97. 67.Meroni, G., Genomics and evolution of the TRIM gene family. Adv Exp Med Biol, 2012. 770: p. 1-9. 68.Cammas, F., et al., Trim Involvement in Transcriptional Regulation. Trim/Rbcc Proteins, 2012. 770: p. 59-76. 69.Bernier-Villamor, V., et al., Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between Ubiquitin-Conjugating Enzyme Ubc9 and RanGAP1. Cell, 2002. 108(3): p. 345-356. 70.Tatham, M.H., et al., Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol, 2005. 12(1): p. 67-74. 71.Han, X.F., H.J. Du, and M.A. Massiah, Detection and Characterization of the In Vitro E3 Ligase Activity of the Human MID1 Protein. Journal of Molecular Biology, 2011. 407(4): p. 505-520. 72.Tatham, M.H., et al., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biology, 2008. 10(5): p. 538-546. 73.Yang, S., et al., PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol, 2002. 4(11): p. 865-70. 74.Sahin, U., et al., Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol, 2014. 204(6): p. 931-45. 75.Hatakeyama, S., TRIM proteins and cancer. Nat Rev Cancer, 2011. 11(11): p. 792-804. 76.Berjanskii, M.V., S. Neal, and D.S. Wishart, PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res, 2006. 34(Web Server issue): p. W63-9. 77.Giraud, M.F., J.M. Desterro, and J.H. Naismith, Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr D Biol Crystallogr, 1998. 54(Pt 5): p. 891-8.
|