|
1.Harvey BG, Meylemans HA: The role of butanol in the development of sustainable fuel technologies. Journal of Chemical Technology and Biotechnology 2011, 86:2-9. 2.Procentese A, Raganati F, Olivieri G, Russo ME, de la Feld M, Marzocchella A: Renewable feedstocks for biobutanol production by fermentation. N Biotechnol 2016. 3.Green EM: Fermentative production of butanol - the industrial perspective. Current Opinion in Biotechnology 2011, 22:337-343. 4.Ezeji TC, Qureshi N, Blaschek HP: Bioproduction of butanol from biomass: from genes to bioreactors. Current Opinion in Biotechnology 2007, 18:220-227. 5.Lin YL, Blaschek HP: Butanol Production by a Butanol-Tolerant Strain of Clostridium acetobutylicum in Extruded Corn Broth. Applied and Environmental Microbiology 1983, 45:966-973. 6.Keis S, Bennett CF, Ward VK, Jones DT: Taxonomy and Phylogeny of Industrial Solvent-Producing Clostridia. Int J Syst Bacteriol 1995, 45:693-705. 7.Gottwald M, Hippe H, Gottschalk G: Formation of n-Butanol from d-Glucose by Strains of the "Clostridium tetanomorphum" Group. Appl Environ Microbiol 1984, 48:573-576. 8.George HA, Johnson JL, Moore WEC, Holdeman LV, Chen JS: Acetone, Isopropanol, and Butanol Production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Applied and Environmental Microbiology 1983, 45:1160-1163. 9.Yan RT, Zhu CX, Golemboski C, Chen JS: Expression of Solvent-Forming Enzymes and Onset of Solvent Production in Batch Cultures of Clostridium beijerinckii ("Clostridium butylicum"). Applied and Environmental Microbiology 1988, 54:642-648. 10.Dabrock B, Bahl H, Gottschalk G: Parameters Affecting Solvent Production by Clostridium pasteurianum. Applied and Environmental Microbiology 1992, 58:1233-1239. 11.Vasconcelos I, Girbal L, Soucaille P: Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. Journal of Bacteriology 1994, 176:1443-1450. 12.Bennett GN, Rudolph FB: The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. Fems Microbiology Reviews 1995, 17:241-249. 13.Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC: Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering 2008, 10:305-311. 14.Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ: Problems with the microbial production of butanol. J Ind Microbiol Biot 2009, 36:1127-1138. 15.Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng QD, Gibson R, Lee HM, Dubois J, Qiu DY, Hitti J, et al: Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. Journal of Bacteriology 2001, 183:4823-4838. 16.Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY: Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering. Biotechnology Journal 2012, 7:186-198. 17.Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD: Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories 2008, 7. 18.Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ: Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering 2009, 11:262-273. 19.Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV: Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology 2010, 87:635-646. 20.Murphy CD: The microbial cell factory. Organic & Biomolecular Chemistry 2012, 10:1949-1957. 21.Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H: Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology 2008, 77:1305-1316. 22.Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-U131. 23.Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC: Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli. Applied and Environmental Microbiology 2011, 77:2905-2915. 24.Ye Q, Bao J, Zhong JJ: Bioreactor Engineering Research and Industrial Applications I Cell Factories Preface. Adv Biochem Eng Biot 2016, 155:V-Vii. 25.Bowles LK, Ellefson WL: Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 1985, 50:1165-1170. 26.Knoshaug EP, Zhang M: Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 2009, 153:13-20. 27.Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y: Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 2010, 9:3046-3061. 28.Liu XB, Gu QY, Yu XB: Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. Bioresour Technol 2013, 130:638-643. 29.Tomas CA, Beamish J, Papoutsakis ET: Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 2004, 186:2006-2018. 30.Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD: Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 2010, 76:1935-1945. 31.Brynildsen MP, Liao JC: An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 2009, 5:277. 32.Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO: Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 2003, 19:612-623. 33.Sigler K, Chaloupka J, Brozmanova J, Stadler N, Hofer M: Oxidative stress in microorganisms-I. Microbial vs. higher cells-damage and defenses in relation to cell aging and death. Folia Microbiol (Praha) 1999, 44:587-624. 34.Jones DP: Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 2008, 295:C849-868. 35.Perrone GG, Tan SX, Dawes IW: Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 2008, 1783:1354-1368. 36.Fridovich I: Superoxide radical and superoxide dismutases. Annual review of biochemistry 1995, 64:97-112. 37.Imlay JA: Pathways of oxidative damage. Annu Rev Microbiol 2003, 57:395-418. 38.Coyle P, Philcox JC, Carey LC, Rofe AM: Metallothionein: the multipurpose protein. Cell Mol Life Sci 2002, 59:627-647. 39.Vallee BL: The function of metallothionein. Neurochem Int 1995, 27:23-33. 40.Park JD, Liu Y, Klaassen CD: Protective effect of metallothionein against the toxicity of cadmium and other metals(1). Toxicology 2001, 163:93-100. 41.Sato M, Kondoh M: Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med 2002, 196:9-22. 42.Lin KH, Chien MF, Hsieh JL, Huang CC: Mercury resistance and accumulation in Escherichia coli with cell surface expression of fish metallothionein. Appl Microbiol Biotechnol 2010. 43.Puente JL, Juarez D, Bobadilla M, Arias CF, Calva E: The Salmonella ompC gene: structure and use as a carrier for heterologous sequences. Gene 1995, 156:1-9. 44.Kempf B, Bremer E: Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 1998, 170:319-330. 45.Xu Z, Lee SY: Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl Environ Microbiol 1999, 65:5142-5147. 46.Tsuge K, Matsui K, Itaya M: One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res 2003, 31:e133. 47.Miller J: Experiments in molecular genetics. 1972. 48.Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. Cold spring harbor laboratory press; 1989. 49.Anagnostopoulos C, Spizizen J: Requirements for Transformation in Bacillus Subtilis. J Bacteriol 1961, 81:741-746. 50.Harwood CR, Cutting SM: Plasmids. In "Molecular biological methods for Bacillus". C. R. Harwood and S. M. Cutting edn: John Wiley and Sons, Chichester, UK; 1990. 51.Borden JR, Papoutsakis ET: Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 2007, 73:3061-3068. 52.Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30:2114-2120. 53.Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7:562-578. 54.NIH DAVID Bioinformatics Resources 6.7. Available online: http://david.abcc.ncifcrf.gov/ (accessed on 28 December 2014). 55.Ruhl J, Schmid A, Blank LM: Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 2009, 75:4653-4656. 56.Dien B, Cotta M, Jeffries T: Bacteria engineered for fuel ethanol production: current status. Applied microbiology and biotechnology 2003, 63:258-266. 57.Casadei, Ingram R, Hitchings E, Archer J, Gaze JE: Heat resistance of Bacillus cereus, Salmonella typhimurium and Lactobacillus delbrueckii in relation to pH and ethanol. Int J Food Microbiol 2001, 63:125-134. 58.Kataoka N, Tajima T, Kato J, Rachadech W, Vangnai AS: Development of butanol-tolerant Bacillus subtilis strain GRSW2-B1 as a potential bioproduction host. AMB Express 2011, 1:10. 59.Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M, Jr., et al: Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci U S A 2011, 108:13752-13757. 60.Trautwein K, Kuhner S, Wohlbrand L, Halder T, Kuchta K, Steinbuchel A, Rabus R: Solvent stress response of the denitrifying bacterium "Aromatoleum aromaticum" strain EbN1. Appl Environ Microbiol 2008, 74:2267-2274. 61.Landfald B, Strom AR: Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 1986, 165:849-855. 62.Yang JN, Wang C, Guo C, Peng XX, Li H: Outer membrane proteome and its regulation networks in response to glucose concentration changes in Escherichia coli. Molecular bioSystems 2011, 7:3087-3093. 63.Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, et al: Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 1999, 15:855-866. 64.Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G: Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 2009, 82:625-638. 65.Mills TY, Sandoval NR, Gill RT: Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnology for biofuels 2009, 2:26. 66.Chin WC, Lin KH, Chang JJ, Huang CC: Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein. Biotechnology for biofuels 2013, 6:130. 67.Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H: Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 2007, 73:1355-1361. 68.Uozumi T, Hoshino T, Miwa K, Horinouchi S, Beppu T, Arima K: Restriction and modification in Bacillus species: genetic transformation of bacteria with DNA from different species, part I. Mol Gen Genet 1977, 152:65-69. 69.Kaneko S, Akioka M, Tsuge K, Itaya M: DNA shuttling between plasmid vectors and a genome vector: systematic conversion and preservation of DNA libraries using the Bacillus subtilis genome (BGM) vector. Journal of molecular biology 2005, 349:1036-1044. 70.Zhu L, Dong H, Zhang Y, Li Y: Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng 2011, 13:426-434. 71.Boyarskiy S, Davis Lopez S, Kong N, Tullman-Ercek D: Transcriptional feedback regulation of efflux protein expression for increased tolerance to and production of n-butanol. Metab Eng 2016, 33:130-137. 72.Zhang H, Chong H, Ching CB, Song H, Jiang R: Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol 2012, 94:1107-1117. 73.Zingaro KA, Terry Papoutsakis E: GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 2013, 15:196-205. 74.Watanabe R, Doukyu N: Improvement of organic solvent tolerance by disruption of the lon gene in Escherichia coli. J Biosci Bioeng 2014, 118:139-144. 75.Bui le M, Lee JY, Geraldi A, Rahman Z, Lee JH, Kim SC: Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions. J Biotechnol 2015, 204:33-44. 76.Si HM, Zhang F, Wu AN, Han RZ, Xu GC, Ni Y: DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. Biotechnology for biofuels 2016, 9:114. 77.Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010, 463:559-562. 78.Mialon L, Vanderhenst R, Pemba AG, Miller SA: Polyalkylenehydroxybenzoates (PAHBs): biorenewable aromatic/aliphatic polyesters from lignin. Macromolecular rapid communications 2011, 32:1386-1392. 79.Polen T, Spelberg M, Bott M: Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 2013, 167:75-84. 80.Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD, 2nd, Pfleger BF: Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 2011, 77:8114-8128. 81.Jarboe LR, Royce LA, Liu P: Understanding biocatalyst inhibition by carboxylic acids. Frontiers in microbiology 2013, 4:272. 82.Lennen RM, Pfleger BF: Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 2013, 8:e54031. 83.Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR: Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab Eng 2015, 29:180-188. 84.Tan Z, Yoon JM, Nielsen DR, Shanks JV, Jarboe LR: Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metabolic engineering 2016, 35:105-113. 85.Ingram LO: Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol 1986, 4:40-44. 86.Aono R, Nakajima H: Organic solvent tolerance in Escherichia coli. Tanpakushitsu Kakusan Koso 1997, 42:2532-2541. 87.Ingram LO, Buttke TM: Effects of alcohols on micro-organisms. Adv Microb Physiol 1984, 25:253-300. 88.Kabelitz N, Santos PM, Heipieper HJ: Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 2003, 220:223-227. 89.Minty JJ, Lesnefsky AA, Lin F, Chen Y, Zaroff TA, Veloso AB, Xie B, McConnell CA, Ward RJ, Schwartz DR, et al: Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microb Cell Fact 2011, 10:18. 90.Ingram LO: Ethanol tolerance in bacteria. Crit Rev Biotechnol 1990, 9:305-319. 91.Goodarzi H, Bennett BD, Amini S, Reaves ML, Hottes AK, Rabinowitz JD, Tavazoie S: Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli. Mol Syst Biol 2010, 6:378. 92.Woodruff LB, Pandhal J, Ow SY, Karimpour-Fard A, Weiss SJ, Wright PC, Gill RT: Genome-scale identification and characterization of ethanol tolerance genes in Escherichia coli. Metab Eng 2013, 15:124-133. 93.Asako H, Nakajima H, Kobayashi K, Kobayashi M, Aono R: Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl Environ Microbiol 1997, 63:1428-1433. 94.Luo LH, Seo PS, Seo JW, Heo SY, Kim DH, Kim CH: Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotechnol Lett 2009, 31:1867-1871. 95.Jarboe LR, Liu P, Royce LA: Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Current Opinion in Chemical Engineering 2011, 1:38-42. 96.Ingledew WJ, Poole RK: The respiratory chains of Escherichia coli. Microbiol Rev 1984, 48:222-271. 97.Georgellis D, Kwon O, Lin EC: Quinones as the redox signal for the arc two-component system of bacteria. Science 2001, 292:2314-2316. 98.Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D: Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci U S A 2004, 101:13318-13323. 99.Malpica R, Sandoval GR, Rodriguez C, Franco B, Georgellis D: Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal 2006, 8:781-795. 100.Saini M, Li SY, Wang ZW, Chiang CJ, Chao YP: Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. Biotechnology for biofuels 2016, 9:69. 101.Du Toit PJ, Kotze JP: The isolation and characterization of sorbitol-6-phosphate dehydrogenase from Clostridium pasteurianum. Biochim Biophys Acta 1970, 206:333-342. 102.Hacking AJ, Lin EC: Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J Bacteriol 1976, 126:1166-1172. 103.White D: Physiology and biochemistry of prokaryotes. 2007. 104.Sundara Sekar B, Seol E, Mohan Raj S, Park S: Co-production of hydrogen and ethanol by pfkA-deficient Escherichia coli with activated pentose-phosphate pathway: reduction of pyruvate accumulation. Biotechnology for biofuels 2016, 9:95. 105.Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 2004, 279:6613-6619.
|