跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韓松融
研究生(外文):Sung-Rung Han
論文名稱:CMOS脈波寬度控制迴路暨鎖相迴路之分析與設計
論文名稱(外文):Analysis and Design of CMOS PWCL/DLL and PLL
指導教授:劉深淵
指導教授(外文):Shen-Iuan Liu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:93
中文關鍵詞:鎖相迴路脈波寬度控制迴路
外文關鍵詞:DLLPWCLPLL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當製程技術不斷地提升,電晶體尺寸日益縮小時,各種短通道造成的效應以及電壓、製造和溫度造成的偏移,使得電路設計越來越困難。為了解決這些問題,回授的技術被廣泛地應用在電路設計上。為了能夠鎖定一時脈訊號的相位以及工作週期,鎖相迴路、延遲鎖定迴路、以及脈波寬度控制迴路均被深入的研究。而本論文則主要致力於這三個方面的分析與改善。
在本論文中,分別對脈波寬度控制迴路、脈波寬度控制迴路暨延遲鎖相迴路、以及鎖相迴路進行了深入的探討,而且已在0.35微米的製程中製成晶片。第一個提出來的是一個具有快速鎖定能力的脈波寬度控制迴路以及其電路模型和數學分析。首先,先對傳統的脈波寬度控制迴路作電路分析建立電路模型。接著,根據所建立的電路模型提出新架構並分別推導出傳統架構和新架構的鎖定時間。最後實驗結果確認了我們所作的電路和數學上的分析以及快速鎖定的能力。
第二個提出的是一個新型的單路脈波寬度控制迴路。所設計的新型脈波寬度控制迴路不僅僅能與延遲鎖定迴路一起工作,而且可以減少一個延遲鎖定迴路上的壓控延遲電路,使的此二迴路能有更進一步的整合。藉由所設計的電路,傳統架構上工作週期的精確度必須和對抗製程以及溫度變異的能力來作一取捨的困境可以被消除。控制級的設計上可達到偵測工作週期範圍為100%的能力。除此之外,輸出時脈訊號的工作週期是可預先設定的。
最後,我們將研究重點放在鎖相迴路上。此設計的主要目的有二:自動調整迴路濾波器使其時間常數為一定值以及提供快速鎖定的能力。基於時間常數的固定,可以使得迴路的動態參數(阻尼係數以及自然頻率)可自動追蹤參考時脈訊號的頻率。在快速鎖定的設計上,我們提出了兩個方法。它們可分別減少在鎖定上所花費在頻率的追蹤時間以及相位的追蹤時間。為了比較傳統和新設計的鎖相迴路所需要的鎖定時間,我們提出了一個可以在數學上分析具有cycle-slipping 現象的鎖相迴路的鎖定時間。


As the technology continuously scaling down, the short channel effects and the presence of the voltage, process, and temperature variations make the circuit hard to design. For solving these problems, the feedback technique is widely used. To acquire the clock phase and to assure the duty cycle of the clock, it results in the growth of the phase-locked loops (PLLs), delay-locked loops (DLLs), and pulsewidth control loops (PWCLs). This thesis mainly dedicates to the analysis and improvement in these three fields.
In this thesis, a PWCL, a PWCL with DLL, and a PLL were explored and fabricated in the 0.35μm process. First, a fast-locking PWCL with its circuit models and mathematical analysis are proposed. The circuit models of the PWCL are derived first. Based on the circuit models, the lock times corresponded to the conventional and the proposed PWCLs can be calculated. The experimental results verify the analysis and achieve fast-locking capability.
Second, a new single-path PWCL with built-in DLL is presented. This PWCL can cooperate with a DLL and the voltage-controlled delay line (VCDL) in a DLL can be integrated with the buffer line in a PWCL. The trade-off between the duty cycle precision and the robustness against the process and temperature variations can be eliminated. Also, the tuning range of the duty cycle can theoretically be extended to 100% duty cycle. Moreover, the duty cycle of the output clock is presettable.
Finally, the research concentrates on a PLL. The objects of this chapter have two parts: time constant calibration in the loop filter and fast-locking design. Based on the time constant calibration, the loop dynamics, damping factor and natural frequency, can track with the period of the reference clock. In the fast-locking design, two methods are proposed to reduce the lock times in the frequency and phase acquisitions. To compare the lock times spent in the conventional and the proposed PLL mathematically, a method to estimate the lock time in a PLL with the cycle-slipping phenomenon is derived.


Table of Contents



Abstract

Chapter 1 Introduction……………………………………………….1

1.1 Motivation…………………..………………………………..………………..1
1.2 Thesis Organization…………………………………………………………2

Chapter 2 Fundamentals of PLL/DLL and PWCL……………...….5

2.1 Phase-Locked Loop…………………………………………………………5
2.1.1 Phase Detector…………………………………………………………………6
2.1.2 Charge Pump and Loop Filter…………………………………………………7
2.1.3 Voltage-Controlled Oscillator………………………………………………….8
2.1.4 Divider…………………………………………………………………………8
2.1.5 Loop Analysis……………………………………….…………………………8
2.2 Delay-Locked Loop…………………………………………………...……10
2.2.1 Circuit Model for Type Ⅰ DLL….…………………………………………11
2.2.2 Circuit Model for Type Ⅱ DLL….…………………………………………12
2.3 Pulsewidth Control Loop……………………………………………...…..13
2.3.1 Introduction to Duty Cycle Correction Circuits…………...…………………13
2.3.2 Pulsewidth Control Loop……….….…………………………………………16
2.3.3 Control Stage…………………...….…………………………………………16
2.3.4 Charge Pump…………………...….…………………………………………17
2.3.5 The Implementation of PWCL……….………………………………………18
2.4 Analysis of Transient Response……………………………………...…..19



Chapter 3 A 500MHz~1.25GHz Fast-Locking Pulsewidth Control Loop with Presettable Duty Cycle……………………….................................21

3.1 Introduction………………………………………………………..………..21
3.2 Transient Analysis of the Conventional PWCL……………………….22
3.2.1 Nonlinear Region………………………………………………………….…24
3.2.2 Linear Region………………………………………………………..…….…25
3.2.3 Acquisition Region……………………………………………………...……25
3.3 Fast-Locking Circuit Design…………………………………………...…27
3.3.1 VDDC…………………………………………………………..……….……28
3.3.2 Switched Charge Pump………………………………………………………29
3.4 Duty Cycle Presetting Design………………………………………….…31
3.5 Experimental Results………………………………………………………32
3.6 Summary………………………………………………………………..……36

Chapter 4 A Single-Path Pulsewidth Control Loop with a Built-in Delay-Locked Loop……......................................................................…37

4.1 Introduction……………………….………...…………………………..……37
4.2 The Proposed Architecture…..……………………………………………40
4.2.1 Control Stage……………………………………………………..…………..42
4.2.2 Switched Charge Pump (SCP) and Single-to-Complementary Circuit (STC).44
4.2.3 Phase Detector with Start-up Circuit…………………………………………45
4.3 Stability Analysis………………………….…………………………………47
4.4 The Comparison of the Duty Cycle Accuracy Between the Conventional and Proposed PWCLs………………………….…………………….………48
4.5 Experimental Results………………………………………...………..……..51
4.6 Summary…….…………………………………………………………..……54

Chapter 5 A Time Constant Calibrated Phase-Locked Loop with Fast-Locking Mechanisms……………………………...…......……...…55

5.1 Introduction………………………………………………………………….55
5.2 Time Constant Calibration…………………………………………..……57
5.2.1 Charge Pump…………………………………………………………………58
5.2.2 Time Constant Calibration Circuit…………………………………………...60
5.2.3 Voltage-Controlled Current Source (VCCS) ………………………..………60
5.2.4 Variable Capacitance Multiplier…………………………………..…………62
5.2.5 Non-overlapped Clock Generator………………………………..…………64
5.2.6 Lock Detector………………….…………………………………..…………64
5.3 Transient Analysis and Fast-Locking Design…………………………..65
5.3.1 Nonlinear Region………………………………………….…………………66
5.3.2 Linear Region………………………………………………...………………71
5.3.3 Fast-Locking Design…………………………………………………………78
5.4 Experimental Results……………………………………………….………81
5.5 Summary…………………………………………………………...…………85

Chapter 6 Conclusion and Future Work……..…..…….….………..…87

6.1 Conclusion……………………………………………………….………….87
6.2 Future Work…………………………………………………………………..88

Bibliography…...……………………...………..………………….....…89

Publication List……………………...………..…………………......…93



[1] P. Larsson, “A 2-1600-MHz CMOS clock recovery PLL with low-Vdd capability,” IEEE J. Solid-State Circuits, vol. 34, pp. 1951-1960, Dec. 1999.
[2] Y. Moon, J. Choi, K. Lee, D. K. Jeong, and M. K. Kim, “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance,” IEEE J. Solid-State Circuits, vol. 35, pp. 377-384, Mar. 2000.
[3] T. Ogawa and K. Taniguchi, “A 50% duty-cycle correction circuit for PLL output,” in Proc. IEEE 2002 Int. Symp. Circuits and Systems, vol. 4, 2002, pp. 21-24.
[4] Y. J. Jung, S. W. Lee, D. Shim, W. Kim, C. H. Kim, and S. I. Cho, “A low jitter dual loop DLL using multiple VCDLs with a duty cycle corrector,” in Symp. on VLSI Circuits Dig. Tech. Papers, June 2000, pp. 50-51.
[5] F. Mu and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, vol. 35, pp. 134-141, Feb. 2000.
[6] R. E. Best, Phase-Locked Loops. New York: Mc Graw Hill, 1999.
[7] W. F. Egan, Phase-Lock Basics. New York: Wiley, 1998.
[8] B. Razzavi, Design of Analog CMOS Integrated Circuits. New York: Mc Graw Hill, 2001.
[9] M.-J E. Lee, W. J. Dally, T. Greer, H.-T. Ng, R. F.-Rad, J. Poulton, and R. Senthinathan, “Jitter transfer characteristics of delay-locked loops- theories and design techniques”, IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 614-621, Apr. 2003.
[10] J. Lee and B. Kim, “A low-noise fast-lock phase-locked loop with adaptive bandwidth control,” IEEE J. Solid-State Circuits, vol. 35, pp. 1137-1145, Aug. 2000.
[11] K. Nakamura, M. Fukaishi, Y. Hirota, Y. Nakazawa, and M. Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending,” in Symp. on VLSI Circuits Dig. Tech. Papers, June 2000, pp. 48-49.
[12] P. H. Yang and J. S. Wang, “Low-voltage pulsewidth control loops for SOC applications,” IEEE J. Solid-State Circuits, vol. 37, pp. 1348-1351, Oct. 2002.
[13] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997, pp. 507-513.
[14] G. T. Roh, Y. H. Lee, and B. Kim, “Optimum phase-acquisition technique for charge-pump PLL,” IEEE Trans. Circuits Syst. Ⅱ, vol. 44, pp. 729-740, Sep. 1997.
[15] W. M. Lin and H. Y. Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit,” in Proc. IEEE int. Conf. Systems-on-Chip, 2003, pp. 301-304.
[16] S. R. Han and S. I. Liu, “A 500-MHz- 1.25-GHz fast-locking pulsewidth control loop with presettable duty cycle,” IEEE J. Solid-State Circuits, vol. 39, pp. 463-468, Mar. 2004.
[17] J. Sovoj and B. Razavi, “A 10Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. Solid-State Circuits, vol. 36, pp. 761-767, May. 2001.
[18] M. Mansuri, D. Liu, and C. K. K. Yang, “Fast frequency acquisition phase-frequency detectors for Gsamples/s phase-locked loops,” IEEE J. Solid-State Circuits, vol. 37, pp. 1331-1334, Oct. 2002.
[19] H. Darabi, S. Khorram, H. M. Chien, M. A. Pan, S. Wu, S. Moloudi, J. C. Leete, J. J. Rael, M. Syed, R. Lee, B. Ibrahim, M. Rofougaran, and A. Rofougaran, “A 2.4-GHz CMOS transceiver for Bluetooth,” IEEE J. Solid-State Circuits, vol. 36, pp. 2016-2024, Dec. 2001.
[20] P. Roo, S. Sutardja, S. Wei, F. Aram, and Y. Cheng, “A CMOS transceiver analog front-end for Gigabit Ethernet over CAT-5 cables,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 310-311.
[21] K. Shu, S. S. Edgar, S. M. Jose, and S. H. K. Embabi, “A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier,” IEEE J. Solid-State Circuits, vol. 38, pp. 866-873, Jun. 2003.
[22] G. K. Dehng, J. W. Lin, and S. I. Liu, “A fast-lock mixed -mode DLL using a 2-b SAR algorithm,” IEEE J. Solid-State Circuits, vol. 36, pp. 1464-1471, Oct. 2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top