跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭聖耀
研究生(外文):Sheng-Yao Siao
論文名稱:2205雙相不銹鋼之破壞韌性與顯微組織關係研究
論文名稱(外文):Correlation between fracture toughness and microstructure in 2205 duplex stainless steel
指導教授:侯春看侯春看引用關係
指導教授(外文):Chun-Kan Hou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:85
中文關鍵詞:σ相破壞韌性2205雙相不銹鋼
外文關鍵詞:2205 duplex stainless steelfractureσ phase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2205雙相不銹鋼為一種具備肥粒鐵系不銹鋼的高強度、高抗應力腐蝕能力,以及沃斯田鐵系不銹鋼的高延展性、均勻腐蝕性能力的材料。本研究目的在探討2205雙相不銹鋼在不同熱處理溫度:800℃、850℃、900℃、950℃,以及不同冷卻速率:空冷、水冷,其雙相組織與破壞韌性KIC的關係,也將經由其他的機械性質試驗,如衝擊、拉伸及微硬度試驗來與顯微織構相互印證。
研究結果顯示出,利用影像分析儀針對兩相做相定量分析的結果得知,γ相的含量隨著退火溫度的上升而減少,呈遞減狀態;相反地,α相則是呈遞增狀態,而此結論與鐵-鎳-鉻三元相圖符合。在顯微組織方面,當退火溫度較低(800℃、850℃)時,硬脆的σ相以薄狀析出在α/γ界面析出,含量多;反之當溫度較高(900℃、950℃)時,σ相以顆粒狀析出,析出量則較低,並且空冷冷卻的量比水冷來的多。本研究亦發現其他析出物產生,如:χ相、M23C6等。
在機械性質方面,與硬脆的σ相有著較密切的關係。σ相含量較多的空冷之強度較佳,但其延性和韌性皆不如含量較少水冷來的好,¬而且σ相含量低的高溫退火之延性和韌性比低溫退火還要好。除了退火溫度800℃空冷冷卻的試片之KQ值(應力強度因子)等於KIC值(平面應變破壞韌性)外,其餘退火溫度試片之KQ值皆不等於KIC值,並且退火溫度溫度800℃空冷試片擁有高KQ值約1270N/mm1.5。破壞韌性試片之條紋狀破斷面走向與雙相的島狀組織呈現平行狀態,亦即破壞韌性試片之晶粒方向與取樣方向有密切關係,裂縫會著延著α/γ柱狀型晶界面大面積前進,而不是以穿晶破裂方式前進。
This study investigated the effect of heat treatment temperature, range form 800 – 950oC, and cooling rate on the microstructure, mechanical properties and fracture toughness.
It was found that volume fraction of γ phase decreased with increasing annealing temperature. On the contrary, volume fraction of α phase increased with increasing annealing temperature. As annealing below 850 oC, more hard thin plate σ phase precipitated along α/γ interface. However, a little granular σ phase precipitated during annealing at temperature higher than 900 oC. After annealing, specimen in air cooling precipitated more quantity of σ phase than the specimen in water cooling. It also found that χ phase and M23C6 carbide during annealing.
The amount of σ phase had great influence on the mechanical properties of 2205 duplex stainless steel. The specimen in air cooling had higher strength than the specimen in water cooling. Conversely, the specimen in air cooling had poor ductility than the specimen in water cooling. Furthermore, specimen annealed at high temperature had lower strength than the specimen annealed at low temperature. However, specimen annealed at high temperature had better ductility than the specimen annealed at low temperature. Specimen annealed at 800oC meets the plane strain fracture toughness condition. Its fracture toughness is 1270N/mm1.5. The rest of the specimens annealing at temperature higher than 850 oC didn’t meet the the plane strain fracture toughness condition due to larger pre-crack stress intensity factor. The specimen orientation also affects the crack propagation during testing. In this study, crack propagated vertical to the α/γ fiber structure.
中文摘要...................................................................................................................... i
英文摘要...................................................................................................................... ii
誌謝.............................................................................................................................. iii
目錄.............................................................................................................................. iv
表目錄.......................................................................................................................... vi
圖目錄.......................................................................................................................... vii
一、 緒論...................................................................................................................... 1
1.1 前言....................................................................................................................... 1
1.2 2205雙相不銹鋼之理論背景.............................................................................. 1
1.2.1 雙相不銹鋼簡史.................................................................................... 1
1.2.2 合金成分對雙相不銹鋼的影響........................................................... 2
1.2.3 析出相對雙相不銹鋼的影響............................................................... 3
1.2.4 顯微結構對雙相不銹鋼的影響........................................................... 4
1.3 線性彈性破壞力學的理論與應用.................................................................... 4
1.3.1 Griffith 提出的破壞準則...................................................................... 5
1.3.2 應力強度因子......................................................................................... 5
1.3.3 厚度對KC值的影響............................................................................... 7
1.3.4 破壞韌性的應用.................................................................................... 8
1.4 2205雙相不銹鋼之國內外研究概況................................................................. 8
1.5 研究動機與目的.................................................................................................. 9
1.6 本論文將探討的課題......................................................................................... 10
二、 實驗方法............................................................................................................. 17
2.1 合金成份............................................................................................................... 17
2.2 實驗流程.............................................................................................................. 17
2.2.1 鋼胚.......................................................................................................... 17
2.2.2 固溶熱處理............................................................................................. 17
2.2.3 拉伸試驗................................................................................................. 17
2.2.4 衝擊試驗................................................................................................. 18
2.2.5 破壞韌性KIC試驗................................................................................... 19
2.2.6 微硬度測試............................................................................................. 20
2.2.7 金相觀察................................................................................................. 20
2.2.8 兩相含量之定量分析實驗................................................................... 21
2.2.9 X光繞射儀分析(X-ray diffractometer)................................................. 21
2.2.10 掃描式電子顯微鏡(Scanning Electron Microscope)觀察.................... 21
2.2.11 穿透式電子顯微鏡(Transmission Electron Microscope)觀察............. 21
三、 顯微組織對破壞韌性影響之結果與討論...................................................... 29
3.1 微觀組織.............................................................................................................. 29
3.1.1 金相及SEM顯微組織觀察................................................................... 29
3.1.2 TEM顯為組織觀察................................................................................ 29
3.2 機械性質.............................................................................................................. 30
3.2.1 拉伸試驗結果......................................................................................... 30
3.2.2 衝擊試驗結果......................................................................................... 31
3.2.3 破壞韌性試驗結果................................................................................ 31
第四章 總結論........................................................................................................... 69
第五章 未來研究方向.............................................................................................. 70
參考文獻...................................................................................................................... 71
作者簡歷...................................................................................................................... 75
1. 孫長慶,“雙相不銹鋼的發展過程以及在石化、化工業的應用” 雙相不銹鋼之應用與耐蝕性質研討會講義,國立成功大學成功校區材料系視聽教室,pp.D1-D11, 19-20。
2. 鄭國華等,鋼鐵材料設計與應用,中國礦冶學會出版,八十五年,第十章。
3. R. Nemoto, K. Osozaw, K. Osada , M. Tsuda , 1984, in “Stainless Steels’84”,ed. by G. L. Dunlop, Chalmers University of Technology, G?尒eborg,Sweden, 3-4 Sept. 4, The Institute of Metals, p.149~196.
4. B. Verlinden, K. Cuypers and E. Aernoudt, 1991, in “Duplex StainlessSteels’91”, vol.2, p.711.
5. 劉宏義,2002 ,“合金元素及製成參數對雙相不銹鋼機械性質及耐蝕性質影響之研究”, 博士論文, 國立成功大學.
6. Horng-Yih Liou, Yeong-Tsuen Pan, Rong-Iuan Hsieh, and Wen-Ta Tsai ,2001,Journal of. Materials Engineering and Performance, vol.10, no.2, p.231.
7. Horng-Yih Liou, Rong-Iuan Hsieh, Wen-Ta Tsai, 2002, Materials Chemistryand Physics, vol.74 , p.33.
8. W. T. Tsai, K. M. Tsai and C. J. Lin , 2003 , in: Proceeding of 58th Annual Conference of NACE (CORROSION/2003), San Diego, CA, USA, paper#03398.
9. Robert N Gunn ,1997 ,Duplex Stain Steels Microstructure , Properties and Applications , Abington Publishing .
10. P. Guha and C.A. Clark , 1983 ,“ Duplex Stainless Steels 84”,ed.byR.A.Lula,ASM, P355.
11. K. Ichii and K. Ota,Trans, 1983, Iron Steel Inst. Japan, 23, p.1019.
12. B. Walden and J. M. Nicholls, 1994 , Sandvik Steel Report, S51-54-ENG, 1-2.
13. S. Hertzman,P.J. Ferrira,and B. Brolund, 1997 , Metall. Trans. A, 28A, p.297.
14. DeLong W. T., 1974, Ferrite in austenitic stainless steel weld metals, Weld. J., 53, p273-286.
15. J. Charles , S.Bernhardsson, 1991,“Duplex Stainless Steel 91”, France.
16. J.O. Nilsson, 1992, Mat. Sci. Techn. 8, p.685.
17. J.O. Nilsson, T. Huhtala, L. Karlsson, 1996, Metall. Mat.Trans., 27A, p. 2196.
18. J.O. Nilsson, 1997, Proceedings of Conference “Duplex Stainless Steel 97”KCI publishing, p.73.
19. R.N. Gunn, 2000 , Proceedings of the Conference “Duplex America 2000” KCI Publishing p.299.
20. L. Karlsson, L. Bengtsson, U. Rolander, S. Pak, 1992,Proceedings of Conference “Application stainless steel 92”,Stockholm, . The Institute of Metals, p. 335.
21. T.H. Chen, K.L. Weng, J.R. Yang, 2002, Mat. Sci. Eng., A338, p. 259.
22.L. Duprez, B.C. Cooman, N. Akdut, 2000, Proc. Duplex 2000,Venice, Italian Association of Metallurgy (AIM) p.355
23. K.M. LEE, H.S. CHO, D.C. CHOI, 1999,J. Alloys Comp., 285, p. 156.
24. Y.S. AHN, J.P. KANG, 2000, Mat. Sci. Techn., 16, p.382.
25. S.B. KIM, K.W. PAIK, Y.G. KIM, 1998, Mat. Sci. Eng., A247, p. 67.
26. H.D. Solomon and T.M. Devine, 1982 , “Duplex Stainless Steels”,,ASM, 693.
27. C.V. Roscoe, K.J. Gradwell,and G.W. Lorimer, 1984, Stainless Steels’84,Goteborg,The Institute of Metals,563.
28. A. Zarei Hanzaki, R. Pandi, P. D. Hodgson, S. Yue, 1993 , Metallurgical Transactions A, Vol.24, pp. 2657-2665.
29. H. D. Solomon and T. M. Devine, Jr., Duplex Stainless Steels, 1982, (proc. Conf.) edt. R. A. Lula, Out. 25-28, St. Louis, Missouri, ASM.
30. Robert N Gunn, 1997, Duplex Stain Steels Microstructure,Properties and Applications, Abington Publishing.
31. H. W. Schlapfer and J. Weber, Material and Technik, Vol. 2, p. 60, 1986.
32. Y. Ishizawa, T. Shimada and M. Tanimura, 1983, Corrosion, Paper No. 167, NACE, Houston, Texas.
33. J. Hochmann, A. Desestret, P. Jolly and R. Mayoud, NACE-5, ed. R. W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, 1977, Houston, TX: National Assocition Corrosion Engineers, P 956.
34. A. Desestret and R. Oltra, 1980, Corrosion Sci., Vol. 20, P799.
35. T. Magnin, J. Le Coze and A. Desestret, 1983 , Duplex stainless steels, ed. R. A. Lula, Metals Park, OH: ASM International, P535.
36. Willian D. Callister, 1997,〝Materials Science and Engineering an Introduction 〞, Chapter8.
37. 陳志鵬,2000,雙相不銹鋼高能量束銲件的微觀組織與織構演化之研究,國立中山大學,博士論文。
38. Horng-Yih Liou, 2001, “Effects of Alloying Elements and Process Parameters on the Mechanical Property and Corrosion Resistance of Duplex Stainless Steels, Jun.
39. 翁光良,2004, 2205雙相不銹鋼之低溫時效脆性及析出物與基地結晶學之研究,國立台灣大學,博士論文。
40. 橫田博史,荒井一生,公開特許公報(A),平2-97649,1990。
41. 近藤邦夫,公開特許公報(A),特開平6-128691,1994。
42. 白石佳代,山岸浩一,小原剛,公開特許公報(A),特開平9-195003,1997。
43. 高橋和秀,大江耕一郎,百步珠子,公開特許公報(A),特開平7-118805,1995。
44. 清水哲也,岡部道生,公開特許公報(A),特開平9-302446,1997。
45. 白石佳代,山岸浩一,小原剛,公開特許公報(A),特開平9-209087,1997。
46. 十河泰雄,垿本俊治,公開特許公報(A),平2-290920,1990。
47. Harvey D. Solomon, Schenectady, N.Y. , 1982 , “Method of making high strength duplex stainless steels, U.S. Patent Number:4,353,755. Oct.12.
48. Armand P.Bond, Livonia, 1985 , “Cast duplex stainless steel, U.S. Patent Number:4,500,351. Feb.19.
49. Prodyot Guha, High Wycombe, 1987 ,“High chromium duplex stainless steel, U.S. Patent Number:4,657,606,Apr.14.
50. Yasuhiro Maehara, Kobe, 1988 , “Hot working method for superplastic duplex phase stainless steel, U.S. Patent Number:4,722,755, Feb. 2.
51. S. Bexettaa , M. Boniardi , 1996 , Microstructure and fatigue properties of a welded duplex stainless steel , Fatigue Fraet. Engng Mater. Struct. Vol.19, No.6, p.647-654.
52. H. Sieurin and R. Sandstrom , 2006, Fracture toughness of a welded duplex stainless steel , Engineering Fracture Mechanics , Vol.73 , p.377-390.
53. O. Kolednik, M. Albrecht, M. Berchthaler, H. Germ, R. Pippan, F. Riemelmoser, J. Stampfl and J. We, 1996 ,Acta metal. Mater Vol.44 , No.88, p.3307-3319.
54. L. Iturgoyen , M. Anglada ,1997 , The influence of ageing at intermediate temperatures toughness of a duplex stainless steel , Fatigue Frct . Engng Muter. Struct. vol. 20, No. 5, p. 645-657.
55. ASTM Standards,〝Standard Method for Notched Bar Impact Testing of Metallic Materials〞, ASTM Specification E23-90.
56. ASTM Standards,〝Standard Method of Test for Plain Strain Fracture Toughness of Metallic Materials〞, ASTM Specification E399-90.
57. Yoon-Jun Kim , 2004 , 〝Phase transformations in cast: duplex stainless steels 〞, Iowa State University, U.S.A.
58. J. A. JimeZ, M. Carsi, O. A. Ruano, 2000 , JOURNAL OF MATERIALS SCIENCE 35 p.907-915.
59. Hoffmeister H, Mundt R. Arch Eisenh?厎tenwes 1981;52:159–64.
60. T. H. Chen , and J. R. Yang, 2001 , Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205 duplex stainless steel , Materials Science and Engineering A,vol.311, p.28-41.
61. I. Tamura, Y. Tomota, A. Akao, Y. Yamaoka, M. Ozawa and S. Kanatani, 1973, Transactions of the Iron and Steel Institute of Japan , vol.13 , p.283.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top