中文
陳健尉 (2000),基因微陣列之簡介及其應用:二十一世紀基因分析的利器,生物醫學報導,第二期。陳連進 (2002),以關聯度為基礎的基因表現叢集驗證之方法,國立成功大學資訊工程研究所碩士論文。周正中 (2005),基因微陣列數據分析簡介,台灣醫學,第9卷第5期,622-627。
張雅芳、黃正仲 (2004),微陣列生物科技,科學發展,第381期,34-41。
鄭凱峰 (2004),小樣本高維度資料中二階段分類法之效能評估-以基因微陣列資料癌症分類為例,國立成功大學工業與資訊管理學系碩士班碩士論文。許景涵 (2005),以基因微陣列資料探討基因選取方法對分類正確率之影響,國立成功大學工業與資訊管理學系碩士班碩士論文。程中慧 (2006),無歸納偏置影響因素的基因選取之研究,國立成功大學資訊管理研究所碩士班碩士論文。英文
Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., and Yakhini, Z. (2000). Tissue classification with gene expression profiles, Proceedings of the fourth annual international Conference on Computational molecular biology , 54-64.
Breiman, L. (1996). Bagging predictors, Machine Learning, 24, 123-140.
Daszykowski, M., Walczak, B., and Massart, D. L. (2001). Looking for natural patterns in data part 1. density-based approach, Chemometrics and Intelligent Laboratory Systems, 56(2), 83-92.
Davies, D. I. and Bouldin, D. W. (1979). A cluster seperation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224-227.
DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale, Science, 278, 680-686.
Ding, C. and Peng, H. (2003). Minimum redundancy feature selection from microarray gene expression data, Proceedings of the Computational Systems Bioinformatics Conference, 523-529.
Dougherty, E. R. (2001). Small sample issue for microarray-based classification, Comparative and Functional Genomics, 2, 28-34.
Dudoit, S., Fridlyand, J., and Speed, T. (2002). Comparison of discrimination methods for the classification of tumor using gene expression data, Journal of the American Statistical Association, 97, 77-87.
Eisen, M. B., Spellman, P. T., Brown P.O., and Botstein, D. (1998) Cluster analysis and display of genome wide expression patterns, Proceedings of the National Academy of Science of the United States of America, 95, 14863-14868.
Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial database with noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, 226-231.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 286, 531-537.
Guha, S., Rastogi, R., and Shim, K. (1998). CURE: an efficient clustering algorithm for large databases, International Conference on Management of Data, 73-84.
Guha, S., Rastogi, R., and Shim, K. (2000). Rock: a robust clustering for categorical attributes, Proceedings of the 15th International Conference on Data Engineering, 512-521.
Guyon, I., Weston, J., and Barnhill, S. (2002). Gene selection for cancer classification using support vector machines, Machine Learning, 46, 389-422.
Hanczar, B., Courtine, M., Benis, A., Hennegar, C., Clement, K., and Zucker, J. D. (2003). Improving classification of microarray data using prototype-based feature selection, ACM SIGKDD Explorations Newsletter, 5, 23-30.
Huetra, E. B., Duval, B., and Hao, J. K. (2006). A hybrid GA/SVM approach for gene selection and classification of microarray data, Lecture Notes in Computer Science, 3907, 34-44.
Jaeger, J., Sengupta, R., and Rzzo, W. L. (2003). Improved gene selection for classificationof microarrays, Pacific Symposium on Biocomputing, 53-64.
Jain, A. K., Dube, R. C. (1988). Algorithms for clustering data, Englewood Cliffs: Prentice Hall.
Jiang, D., Tang, C., and Zhang, A. (2004). Cluster analysis for gene expression data: a survey, IEEE Transactions on Knowledge and Data Engineering, 16(11), 1370-1386.
Jörnsten, R. and Yu, B. (2003). Simultaneous gene clustering and subset selection for sample classification via MDL, Bioinformatics, 19, 1100-1109.
Karypis, G., Han, E. H., and Kumar, V. (1999). CHAMELEON: a hierarchical clustering algorithm using dynamic modeling, IEEE Computer, 32(8), 68-75.
Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324.
Lee, K. E., Sha, N., Dougherty, E. R., Vannucci, M., and Mallick, B. K. (2003). Gene selection: a Baysian variable selection approach, Bioinformatics, 19, 90-97.
Li, L., Weinberg, R. C., Darden, T. A., and Pedersen, L. G. (2001). Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method, Bioinformatics, 17, 1131-1142.
Li, J., Zhang, C., and Ogihara, M. (2004). A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression, Bioinformatics, 20(5), 2429-2437.
Liu, H., Li, J., and Wong, L. (2002). A comparative study of feature selection and multiclass classification methods using gene expression profilesand proteomic patterns, Genome Informatics, 13, 51-60.
Liu, B., Wan, C., and Wang, L. (2006). An efficient semi-unsupervised gene selection method via spectral biclustering, IEEE Transactions on Nanobioseience, 5(2), 110-114.
Lu, Y. and Han, J. (2003). Cancer classification using gene expression data, Information Systems, 28, 243-268.
Nguyen, D. V. and Rocke, D. M. (2002). Tumor classification by partial least squares using microarray gene expression data, Bioinformatics, 18, 39-50.
Park, P., Pagano, M., and Bonetti, M. (2001). A nonparametric scoring algorithm for identifying informative genes from microarray data, Proceedings of the Pacific Symposium on Biocomputing, 6, 52-63.
Qian, W. N. and Zhou, A. Y. (2002). Analyzing popular clustering algorithms from different viewpoints, Journal of Software, 13(8), 1382-1394.
Su, Y., Murali, T., Pavlovic, V., Schaffer, M., and Kasif, S. (2003). RankGene: identification of diagnostics genes based on expression data, Bioinformatics, 19, 1578-1579.
Wang, Y., Makedon, F., Ford, J., and Pearlman, J. (2005). Hykgene: a hybrid approach for selecting genes for phenotype classification using microarray gene expression data, Bioinformatics, 21(8), 1530-1537.
Xing, E. P., Jordan, M. I., and Karp, R. M. (2001). Feature selection for high-dimensional genomic microarray data. Proceedings of the Eighteenth International Conference on Machine Learning, 601-608.
Xiong, M., Fang, Z., and Zhao, J. (2003). Biomarker identification by feature wrappers, Genome Research, 11, 1878-1887.
Wong, T. T. and Hsu, C. H. (2006). Two-stage classification methods for microarray data, accepted by Expert Systems with Applications.
Yu, L. and Liu, H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5, 1205-1224.
Yu, L. and Liu, H. (2004). Redundancy based feature selection for microarray data. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 737-742.