跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許漢民
研究生(外文):Han-Min Shiu
論文名稱:鍶鋅磷酸鹽系紫外穿透玻璃之研究
論文名稱(外文):Properties and structural investigations of UV-transmitting vitreous strontium zinc phosphate
指導教授:施並裕
指導教授(外文):Ping-Yu Shih
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:材料科學工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:102
中文關鍵詞:鍶鋅磷酸鹽玻璃玻璃轉移溫度化學耐久性紫外光穿透度霍氏轉換紅外光譜儀固態核磁共振儀
外文關鍵詞:strontium zinc phosphate glassesglass transition temperaturechemical durabilityUV-transmittanceFourier transformed infrared spectroscopy31P solid state nuclear magnetic resonance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
本研究選擇三元系鍶鋅磷酸鹽玻璃(SrO-ZnO-P2O5)作為研究的對象。研究之主要目的,在採用一般商用試藥級之原料,以製備高紫外穿透性之磷酸鹽玻璃;以SrO取代ZnO來探討對於磷酸鹽玻璃性質之改變與結構之變化。
本系玻璃之性質與組成有很密切的關係,當玻璃中SrO含量增加時,玻璃之密度、玻璃轉移溫度(Tg)、玻璃軟化溫度(Td)與熱膨脹係數(���w也隨之上升,而其化學耐久性獲得改善。利用一般試藥級可以熔煉出高紫外穿透度的磷酸鹽玻璃,於250 nm的波長仍有70 %的穿透度。隨著SrO含量增加,其紫外穿透度受到修飾劑離子半徑與場強的關係,導致其紫外穿透度下降。
添加Al2O3取代ZnO可以增加其化學耐久性,但由於鋁離子與磷酸分子產生Al-O-P鍵聯,造成其3s-3p能階變小,導致其穿透度隨著Al2O3增加而紫外穿透度下降。熔煉時間之改變也會影響到玻璃之結構與性質。將熔煉時間拉長,延長1.5小時其玻璃可以達到最低的含水量,隨著時間繼續拉長,其含水量會逐漸提高。而OH含量會影響紫外穿透度,隨著OH含量增多其紫外穿透度會隨之下降。
本研究利用霍氏轉換紅外光譜儀(FTIR)及固態核磁共振儀(31P MAS-NMR)來探討玻璃之結構。在P2O5含量為50與60 mole%之玻璃系統中,50 mole%的玻璃結構屬於長鏈狀的鍵聯形式,60 mole%則屬於環鏈狀的鍵聯形式。隨著SrO含量,P-O-P鍵聯不會被破壞,提高了玻璃網絡之鍵聯密度與強度。而使玻璃之Tg提高,化學耐久性獲得改善。在P2O5含量為40 mole%之玻璃系統中,PO3與PO-含量增多以及O-P-O遭到破壞,31P MAS-NMR顯示Q1含量增多,由FTIR中顯示P-O-P鍵聯受到修飾劑的SrO與ZnO的破壞,由此說明磷酸鏈鏈長之縮短。
The main objective of this thesis is to study the structure and properties of ternary strontium zinc phosphate (SrO-ZnO-P2O5) glass system in a systematic manner, in order to develop a UV-transmitting phosphate glass by using the reagent-grade raw materials.
The properties of this glass system are strongly composition dependent. Substitution of SrO for ZnO increases density, glass transition temperature (Tg), glass softening temperature (Td) and thermal expansion coefficient (���w of the glass. Besides, the chemical durability of the glasses was improved. The high UV-transmitting phosphate glass, which the light transmittance of 250 nm wavelength is over 70%, could be prepared by using the reagent-grade raw materials. The UV-transmitting of glasses is related with the cation radius and field strength of modifier. It is result in the UV light would be absorbed with increasing SrO content.
Substitution of Al2O3 for ZnO improved the chemical durability of glasses. The aluminium ions are bonded with phosphate molecules (Al-O-P). It would make the 3s-3p transition energy become lower to lead to the UV-transmittance of glasses is decreased with increasing Al2O3 content. The structure and properties of P2O5-ZnO-SrO glasses vary with melting time. When the melting time is 1.5 hour, the glasses have the lowest OH- content. With longer melting time, the OH- content of the glasses would be increased.
The structure of the glasses was examined by Fourier transformed infrared spectroscopy (FTIR) and 31P solid state nuclear magnetic resonance (31P MAS-NMR). In the 50 and 60 mole% P2O5 glass systems, The bonding structure of 50 mole% P2O5 glass is chain and 60 mole% P2O5 glasses is ring. In the two systems, the bond of P-O-P would be not destroyed with SrO content. It results in enhancing the strength and density of glass network. The chain or ring structure will be tighter leading to increased Tg and chemical durability of the glasses. In the 40 mole% P2O5 glass system, the content of PO3 and PO- bond will be increased and the O-P-O bond will be destroyed. The analysis of 31P MAS-NMR is indicated the content of Q1 is increased and the FTIR spectra is showed the content of P-O-P bond is destroyed by the modifier (SrO and ZnO). It lead to the chain length of phosphate shorten.
摘 要 ................................I
英文摘要 ................................III
目 錄 ................................V
表目錄 ................................IX
圖目錄 ................................X

第一章 緒論............................1
1-1 前言............................1
1-2 研究目的........................4

第二章 理論基礎與論文回顧..............6
2-1 玻璃結構........................6
2-1-1 玻璃的定義......................6
2-1-2 Zachariasen's無規則網絡學說.....7
2-1-3 鍵聯條件........................9
2-2 磷酸鹽玻璃......................11
2-2-1 磷酸鹽系玻璃的單元結構..........12
2-2-2 磷酸鹽玻璃之分類................15
2-3 磷酸鹽耐水性之研究..............19
2-4 鋅磷酸鹽玻璃之研究..............20

2-5 紫外線穿透與玻璃關係............22
2-5-1 何謂紫外線......................22
2-5-2 玻璃對紫外線的吸收效應..........25
2-5-3 影響玻璃紫外穿透的因素..........26
2-6 紫外穿透性於磷酸鹽系玻璃之研究..27

第三章 實驗方法與步驟..................31
3-1 SrO-ZnO-P2O5 系列玻璃之熔製.....31
3-1-1 實驗藥品........................31
3-1-2 實驗流程........................31
3-2 基本性質量測與分析..............35
3-2-1 XRD繞射分析.....................35
3-2-2 密度量測........................35
3-2-3 熱性質分析......................35
3-2-4 化學耐久性試驗..................36
3-2-5 玻璃之紫外穿透度檢測............36
3-3 結構分析........................37
3-3-1 FTIR光譜分析....................37
3-3-2 31P MAS-NMR光譜分析.............37
第四章 實驗結果........................38
4-1 玻璃系統配方確認................38
4-2 玻璃之性質......................39
4-2-1 玻璃密度........................42
4-2-2 Tg及Td..........................44
4-2-3 熱膨脹係數......................44
4-2-4 化學耐久性......................46
4-2-5 紫外線穿透與光能階(Eopt)........48
4-3 玻璃結構........................58
4-3-1 FTIR光譜分析....................58
4-3-2 31P MAS-NMR光譜分析.............65

第五章 討論............................68
5-1 玻璃組成與性質..................68
5-1-1 密度............................68
5-1-2 熱性質(Tg、Td、a)...............68
5-1-3 化學耐久性......................70
5-1-4 紫外可見光譜分析................71
5-2 鍶鋅磷酸鹽玻璃之結構............73
5-2-1 偏磷酸鹽玻璃(P2O5=50 mol%)......73
5-2-2 超磷酸鹽玻璃(P2O5> 50 mol%).....75
5-2-3 焦磷酸鹽玻璃(P2O5< 50 mol%).....76

第六章 結論............................80

參考文獻.................................82
參考文獻:
[1] P. W. Mcmillan, Glass-Ceramics, 2nd edition, Academic Press, Inc., London, 1979.
[2] W. Vogel, Glass Chemistry, 2nd edition, Springer-Verlag, Inc., London, 1994.
[3] 程道腴 鄭武輝, “玻璃學”, 徐氏基金會, 1970.
[4] M.H. Bartl , K. Gatterer , H.P. Fritzer and S. Arafa, “Investigation of phase separation in Nd3+ doped ternary sodium borosilicate glasses by optical spectroscopy”, Spectrochimica Acta Part A 57 (2001) 1991-1999.
[5] Z. Yao, Y. Ding, T. Nanba and Y. Miura, “Intensified photoluminescence of Eu3+ in the phase-separated borosilicate glass”, J. Ceram. Soc. Jpn. 106 [11] (1998) 1043-1047.
[6] T. Westerhoff, K. Knapp, and E. Moersen, “Optical materials for microlithography applications”, SPIE 3424 (1998) 10-19.
[7] M. A. Chaudhry and M. Altaf, “Optical Absortion Studies of Sodium Cadmium Phosphate Glasses”, Mater. Letters, 34 (1998) 213-216.
[8] D. Ehrt, “UV-Absorption and Radiation Effects in Different Glasses doped with Iron and Tin in the ppm Range”, C. R. Chimie, 5 (2000) 679-692.
[9] B. Karmakar, P. Kundu and R. N. Dwivedi, “Effect of Vacuum Dehydroxylation on the UV Transparency and Structure of Metaphosphate Glasses”, Mater. Letters, 47 (2001) 371-375.
[10] B. Karmaker, P. Kundu and R. N. Dwivedi, “UV transparency and structure of fluorophosphate glasses”, Mater. Letters, 57 (2002) 953-958.
[11] R. Kirilova and V. Kozhukharov, “Synthesis and properties of phosphate dosimeter glasses”, Mater. Sci. Eng., B34 (1995) 216-219.
[12] H. Takebe, Y. Baba and M. Kuwabara, “Dissolution behavior of ZnO–P2O5 glasses in water”, J. Non-Cryst. Solids 352 (2006) 3088-3094.
[13] Y. He and D.E. Day, ”Development of a Low Temperature Phosphate Sealing Glass”, Glass Technol., 33[3] (1992) 214-219.
[14] B. C. Bunker, G. W. Arnold, M. Rajaram and D.E. Day, “Corrosion of Phosphorus Oxynitride Glasses in Water and Humid Air” J. Am. Ceram. Soc. 70[6] (1987) 425-430.
[15] R. K. Brow, “Nature of Alumina in Phosphate Glass I: Properties Sodium Aluminophosphate Glass”, J. Am. Ceram. Soc. 76[4] (1993) 913-918.
[16] Y. B. Peng and D. E. Day, “High Thermal Expansion Phosphate Glasses Part I”, Glass Technol. 32[5] (1991) 166-173.
[17] J. E. Shelby, Introduction to Glass Science and Technology, RSC Paperbacks, Inc., USA, 1997.
[18] 泉谷徹郎, 高正雄, “光學玻璃 Optical Glasses : 光學玻璃之狀態,屈折散射,光學玻璃之連續熔解,研磨,基本物性原理,技術研究”, 復漢出版社印行, 1985
[19] W. H. Zachariasen, “The Atomic Arrangement in Glass”, J. Am. Ceram. Soc., 54 (1932) 3841
[20] A. Z. Dietzel, Z. Electrochem., 48 (1942) 9-23
[21] 王承遇, 陶瑛, “玻璃成分設計與調整”, 材料科學與工程出版中心, 2006.
[22] B. Tischendorf, J. U. Otaigbe, J. W. Wiench, M. Pruski and B. C. Sales, “A study of short and intermediate range order in zinc phosphate glasses”, J. Non-Cryst. Solids, 282 (2001) 147-158.
[23] R. K. Brow, D. R. Tallant, S. T. Myers and C. C. Phifer, “The short-range structure of zinc polyphosphate glass”, J. Non-Cryst. Solids, 191 (1995) 45-55.
[24] M. R. Reidmeyer, D. E. Day and R. K. Brow, “Phosphorus Oxynitride Glasses of Variable Sodium Content”, J. Non-Cryst. Solids, 177 (1994) 208-215
[25] J. A. Wilder, “Glasses and Glass Ceramics for Sealing to Aluminum Alloys”, J. Non-Cryst. Solids, 38&39 (1980) 879-884
[26] C. R. Kurkjian, “Mechanical Properties of Phosphate Glasses”, J. Non-Cryst. Solids, 263&264 (2000) 207-212
[27] A. E. Marino, S. R. Arrasmith, L. L. Gregg, S. D. Jacobs, G. Chen and Y. Duc, “Durable Phosphate Glasses with Lower Transition Temperatures”, 289 (2001) 37-41
[28] J. J. Hudgens and S. W. Martin, “Glass Transition and Infrared Spectra of Low-Alkali, Anhydrous Lithium Phosphate Glasses”, J. Am. Cream. Soc., 76 [7] (1993) 1691-1696.
[29] B. C. Sales, J. U. Otaigbe, G. H. Beall, L. A. Boatner, J. O. Ramey, “Structure of Zinc Polyphosphate Glasses”, J. Non-Cryst. Solids, 226 (1998) 287-293.
[30] D. Ehrt, P. Ebeling, U. Natura, “UV Transmission and Radiation-induced defects in phosphate and fluride-phosphate glasses” J. Non-Cryst. Solids, 263&264 (2000) 240-250.
[31] H. S. Liu, T. S. Chin and S. W. Yung, “FTIR and XPS studies of low-melting PbO-ZnO-P205 glasses”, Materials Chem. Phys. 50 (1997) 1-10.
[32] J. S. Hassan and M. Hafid, “Properties of vitreous barium zinc mixed metaphosphate”, Materials Research Bulletin 39 (2004) 1123–1130
[33] T. Jermoumi, S. Hassan and M. Hafid, “Structural investigation of vitreous barium zinc mixed Metaphosphate”, Vibrational Spectroscopy 32 (2003) 207–213.
[34] B. C. Tischendorf, T.M. Alam, R.T. Cygan and J.U. Otaigbe, “The structure and properties of binary zinc phosphate glasses studied by molecular dynamics simulations”, J. Non-Cryst. Solids 316 (2003) 261–272.
[35] J. A. Duffy, “Ultraviolet transparency of glass : a chemical approach in terms of band theory polarisability and electronegativity”, Phys. Chem. Glasses 42 [3] (2001) 151–157.
[36] D. Ehrt, M. Carl, T. Kittel, M. Müller and W. Seeber, “High-performance glass for the deep ultraviolet range”, J. Non-Cryst. Solids 177 (1994) 405-419.
[37] 吳明龍, “低熔點SnO-ZnO-P2O5玻璃”, 大同大學材料工程研究所碩士論文 (2001)
[38] H. Scholze, “Glass – Nature, Structure, and Properties”, Springer-Verlag, Inc., New York, 1990.
[39] Y. C. Ratnakaram and A. V. Reddy, “Electronic spectra and optical band gap studies in neodymium chlorophosphate glasses”, J. Non-Cryst. Solids 277 (2000) 142-154.
[40] P. Gray and L. C. Klein, “Optical spectra of sodium phosphate glasses”, J. Non-Cryst. Solids 61[1] (1984) 75-86.
[41] A. S. Shawoosh and A. A. Kutub, “An investigation of the electrical, optical and DSC properties of a copper-phosphate glass composition”, J. Mater. Sci. 28 (1993) 5060-5064.
[42] J. M. Arzeian and C. A. Hogarth, “Some structural, electrical and optical properties of copper phosphate glasses containing the rare-earth europium”, J. Mater. Sci. 26 (1991) 5553-5366.
[43] Jong-Oh Byun, Byong-Ho Kim, Kug-Sun Hong, Hyung-Jin Jung, Sang-Won Lee and A. A. Izyneev, “Properties and structure of RO-Na2O-Al2O3-P2O5 (R=Mg, Ca, Sr, Ba) glasses”, J. Non-Cryst. Solids 190 (1995) 288-295.
[44] P. Y. Shih, J. Y. Ding and S. Y. Lee, “31P MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly- and meta-phosphate glasses”, Mater. Chem. Phy. 80 (2003) 391-396.
[45] H. Ebendorff-Heidepriem, W. Seeber and D. Ehrt, “Dehydration of phosphate glasses”, J. Non-Cryst. Solids 163 (1993) 74-80.
[46] J. C. Arriagada, W. Burckhardt and A. Feltz, “The influence of the water content on absorption and dispersion behaviour of calcium metaphosphate glasses”, J. Non-Cryst. Solids 91 (1987) 375-385.
[47] Ming-Ta Huang and Yi Hu, “Effect of the Addition Alkali on the Dielectric Properties of the Boron Phosphate Glasses”, J. Ceram. Sci. 2[2] (1998) 31-36
[48] H. S. Liu and T. S. Chin, “Low melting PbO-ZnO-P2O5 glasses. Part 2. A structural study by Raman spectroscopy and MAS-NMR”, Phys. Chem. Glasses. 39[3] (1997) 123-131.
[49] R. Witter, P. Hartmann, J. Vogel and C. Jäger, “Measurement of chain length distributions in calcium phosphate glasses using 2D 31P double quantum NMR”, Solid State Nucl. Mag. 13 (1998) 189-200.
[50] P. Y. Shih, “Thermal, chemical and structural characteristics of erbium-doped sodium phosphate glasses”, Mater. Phys. Chem. 84 (2004) 151-156.
[51] R. K. Brow, C. A. Click and T. M. Alam, “Modifier coordination and phosphate glass networks”, J. Non-Cryst. Solids 274 (2000) 9-16.
[52] S. E. Stokowski, W. E. Martin and S. M. Yarema, “Optical and lasing properties of fluorophosphate glass”, J. Non-Cryst. Solids 40 (1980) 481-487
[53] M. Karabulut, E. Metwalli, D.E. Day and R.K. Brow, “Mössbauer and IR investigations of iron ultraphosphate glasses”, J. Non-Cryst. Solids 328 (2003) 199-206
[54] J. Koo, B. S. Bae and H. K. Na, “Raman spectroscopy of copper phosphate glasses”, J. Non-Cryst. Solids 212 (1997) 173-179
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top