跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張瑋倫
研究生(外文):Wei-Lun Chang
論文名稱:探討細胞核質運輸分子在細胞質RNA聚集顆粒中扮演之角色
論文名稱(外文):Characterization of the role of transportin in cytoplasmic RNA granules
指導教授:譚婉玉
指導教授(外文):Woan-Yuh Tarn
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:79
中文關鍵詞:細胞核質運輸分子mRNA 降解
外文關鍵詞:transportinmRNA decaystress granuleprocessing body
相關次數:
  • 被引用被引用:0
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
Imporin-beta 蛋白質家族是細胞核質之間的運輸分子(nucleocytoplasmic transport receptors),可攜帶特定的蛋白質或RNA穿越細胞核膜的孔洞。當細胞遭遇環境改變的刺激時,常啟動本身訊息傳遞的機制,改變基因的表達,以適應環境的變化。因此,我們首先想了解imporin-beta家族的成員,在面臨環境刺激時其分布是否改變,並藉此影響其他蛋白質在細胞中的分布。我們觀察到其中的transportin (TRN) 蛋白質受到環境變化的刺激,其分布會明顯的由細胞核改變到細胞質中的 stress granules。此外,少部分的TRN也會出現在processing bodies。stress granules 與processing bodies 皆為細胞質中的RNA聚集顆粒 (granules):前者為細胞遭逢遽變時,無法進行轉譯的mRNA貯存之處;後者則聚集許多mRNA降解(decay)的酵素,可能為細胞質中mRNA降解之處。利用共軛焦顯微鏡作光漂白後螢光回復(Fluorescence Recovery After Photobleaching)實驗,我們發現TRN可在RNA聚集顆粒與細胞質間快速移動。使用RNA干擾(RNAi)的技術降低TRN表現,我們發現processing bodies的數目增加,stress granules的形成不受影響,此結果與細胞中缺乏mRNA 降解酵素 XRN1與Dcp1a時的情況相同。我們更進一步發現TRN可與 tristetraprolin (TTP)蛋白質及其調控之富含AU序列(ARE)的mRNA結合。TTP亦同時存在於processing bodies與stress granules中,當TTP結合至ARE mRNA,可促使RNA降解。以光漂白後的螢光回收率技術,我們發現TRN可能參與TTP在細胞質與RNA聚集顆粒間的運輸。當TRN表現量低時,ARE mRNA的半生期變得較長。因此,TRN可能參與TTP在細胞內的運送,進而影響RNA的降解。另一方面,我們也發現TRN可與細胞中微小RNA (microRNA) 及參與其作用之 Argonaute2(Ago2) 蛋白質結合;因此,TRN 亦可能參與細胞中微RNA 之調控。我們目前的證據,不僅顯示TRN可存在於細胞質中的RNA聚集顆粒,參與RNA結合蛋白質在期間之移動,並首度發現imporin-beta 家族成員參與ARE mRNA的調控亦可能參與細胞中微小RNA 之調控。
The distribution of proteins is likely to change in response to cellular stresses triggered signaling pathways. Since importin-beta family members are essential for nucleocytoplasmic transport of macromolecules, we attempted to explore whether importin-beta family proteins change their cellular localization in response to environmental change. Among the importin-beta members we analyzed, only transportin (TRN) was shown to detect in a subset of cytoplasmic processing bodies (P-bodies) under normal cell conditions and apparently translocate to stress granules (SGs) upon arsenite, heat shock or FCCP treatment of the cells. Both cytoplasmic granules contain translationally silenced mRNAs. SGs are site for accumulation of mRNA suffered stress-induced translational arrest and PBs are the sites for degradation of a subset of mRNAs and also for siRNA or miRNA-mediated gene expression silencing.
Fluorescence recovery after photobleaching analysis revealed that TRN moved rapidly in and out of cytoplasmic granules. Depletion of TRN enhanced P-body formation but did not affect the number or size of SGs, suggesting that TRN or its cargo(es) participates in cellular function of P-bodies. Accordingly, TRN associated with the AU-rich element (ARE)-binding protein, tristetraprolin (TTP), as well as its associated mRNAs. Depletion of TRN increased the number of P-bodies and stabilized ARE-containing mRNAs, as observed with knockdown of the 5’-3’ exonuclease Xrn1. Moreover, depletion of TRN retained TTP in P-bodies and meanwhile reduced the fraction of mobile TTP to SGs, indicating that TRN probably plays a role in trafficking of TTP between the cytoplasmic granules and whereby modulates the stability of ARE-containing mRNAs. Furthermore, we observed that TRN associated with microRNPs, which suggested a role of TRN in microRNA biogenesis or microRNA-mediated mRNA regulation. Taken together, our data indicated novel roles of TRN in cytoplasmic mRNA metabolism, primarily including mRNP trafficking to RNA granules and mRNA stability control.
Chapter 1 Introduction………………………………………………………………………………………………………………………1
1.1 Nucleocytoplasmic transport…………………………………………………………………………………………………1
General introduction of nucleocytoplasmic transport……………………………………………1
Cargo Recognition of nucleocytoplasmic transport receptors…………………………1
Regulation of nuclear transport receptors by cellular signaling……………2
Novel functions of importin-beta family……………………………………………………………………………3
1.2 Cytoplasmic RNA granules…………………………………………………………………………………………………………3
General introduction of cytoplasmic RNA granules……………………………………………………4
P-bodies, SGs and other RNA granules in yeast……………………………………………………………4
SGs and P-bodies in mammalian cells………………………………………………………………………………………6
Proteins involved in the formation of SGs or P-bodies………………………………………7
Current model of the formation of SGs and P-bodies………………………………………………7
1.3 The mRNA decay and silence pathways associated with P-bodies…………8
ARE-containing mRNA decay…………………………………………………………………………………………………………………9
microRNA mediated gene slicing……………………………………………………………………………………………10
1.4 Summary……………………………………………………………………………………………………………………………………………………11

Chapter 2 Materials and Methods……………………………………………………………………………………………12

Chapter 3 Results…………………………………………………………………………………………………………………………………21
3.1 TRN is located in both SGs and P-bodies………………………………………………………………21
TRN, importin-beta and importin 13 are located to cytoplasmic granules after ARS treatment……………………………………………………………………………………………21
TRN is located in P-bodies in normal cell condition and redistributed to SGs under cellular stresses…………………………………………………22
TRN moves rapidly in and out of the cytoplasmic granules……………………………23
Knockdown of TRN enhances the formation of P-bodies…………………………………………23
3.2 TRN interacts with TTP and participates in ARE-mRNA decay………………24
TRN associates and colocalizes with TTP………………………………………………………………24
TRN interacts with TTP associated mRNP and is involved in ARE RNA decay………………………………………………………………………………………………………………………………………………25
Depletion of TRN influences the distribution and movement of TTP in cytoplasmic granules…………………………………………………………………………………………………………26
3.3 TRN associates with microRNPs…………………………………………………………………………………………28
TRN is associated with Ago2 and miR-16…………………………………………………………………28
Depletion of TRN does not influence the maturation of miR-16………28
TRN associates with small RNAs………………………………………………………………………………………29
3.4 Identification of TRN-associated proteins…………………………………………………………29
Mass spectrum analysis of TRN associated proteins……………………………………29
The phosphorylation status of TRN and its associated proteins under stress conditions…………………………………………………………………………………………………………30
Chapter 4 Discussion……………………32
4.1 P-body and SG localization of TRN………………………………………………………………………………32
4.2 The roles of TRN in P-bodies……………………………………………………………………………………………33
4.3 The roles of TRN in regulation the traffic of TTP-associated mRNPs…………………………………………………………………………………………………………………………………………………………34
4.4 The roles of TRN in association with microRNA pathway…………………………36
4.5 Conclusion……………………………………………………………………………………………………………………………………………37

Reference…………………………………………………………………………………………………………………………………………………………38

Appendix……………………………………………………………………………………………………………………………………………………………48




List of Figures
Figure 1 Subcellular localization of importin-beta family members in
arsenite treated cells………………………………………………………………………………………………49
Figure 2 Subcellular localization of importin-beta family members
and SG-markers after arsenite treatment…………………………………………………50
Figure 3 Subcellular localization of TRN in arsenite, heat-shock or
FCCP treated cells…………………………………………………………………………………………………………51
Figure 4 Localization of TRN and SG-markers for stress granules after arsenite treatment…………………………………………………………………………………………………………………52
Figure 5 Localization of TRN in cytoplasmic P-bodies………………………………………53
Figure 6 Localization of TRN, importin b and P-body makers………………………54
Figure 7 Localization of importin b family members and P body marker
Dcp1a…………………………………………………………………………………………………………………………………………55
Figure 8 FRAP analysis of granule-localized proteins in arsenite-
treated cells………………………………………………………………………………………………………………………56
Figure 9 Comparison of the recovery kinetics of GFP-TRN, GFP-TIA1,
and GFP-mCPEB1 in cytoplasmic granules……………………………………………………57
Figure 10 Effect of TRN knockdown on the formation of SGs and P-
bodies……………………………………………………………………………………………………………………………………58
Figure 11 Effect of TRAP150, Lamin A/C, TRN and XRN1 knockdown on
the formation of P-bodies……………………………………………………………………………………59
Figure 12 The association of TRN and FLAG-TTP in HEK293 cells………………60
Figure 13 The interaction of GST-TRN and 35S-labbled TTP in GST-pull
down experiment………………………………………………………………………………………………………………61
Figure 14 Localization of TRN and FLAG-TTP in HeLa cells……………………………62
Figure 15 Effect of Ran on the interaction of TRN with TTP or HuR…63
Figure 16 Effect of Ran overexpression on the localization of FLAG-
TTP………………………………………………………………………………………………………………………………………………64
Figure 17 Subcellular distribution of TRN transport cargoes and FLAG-
TTP………………………………………………………………………………………………………………………………………………65
Figure 18 The association of TRN with ARE-containing RNA……………………………66
Figure 19 Association of FLAG-TTP to TRN and ARE containing-mRNAs……67
Figure 20 Effect of TRN knockdown on ARE-RNA decay……………………………………………68
Figure 21 Effect of TRN knockdown on the granule formation of FLAG-
TTP………………………………………………………………………………………………………………………………………………69
Figure 22 Effect of TRN knockdown on the granule formation of GFP-
TIA1……………………………………………………………………………………………………………………………………………70
Figure 23 FRAP analysis of GFP-TTP in TRN knockdown cells…………………………71
Figure 24 Partial co-migration and association of TRN with Ago2 and
miR-16………………………………………………………………………………………………………………………………………72
Figure 25 The association of TRN and small RNAs……………………………………………………73
Figure 26 Identification of TRN associated proteins…………………………………………74
Figure 27 The phosphorylation status of TRN and its associated
proteins under heat shock or arsenite treatment…………………………75



List of Tables
Table 1: Localization of importin-beta family members in P-bodies and stress granules (SGs) under normal and arsenite-stressed conditions………………………………………………………………………………………………………………………………………………76
Table 2 : Mass spectrometric identification of TRN associated proteins……………………………………………………………………………………………………………………………………………………………77
1. Starr, C.M. and Hanover, J.A.: Structure and function of the nuclear pore complex: new perspectives. Bioessays: 12, 323-330, 1990
2. Gorlich, D. and Kutay, U.: Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol: 15, 607-660, 1999
3. Kuersten, S., Ohno, M. and Mattaj, I.W.: Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol: 11, 497-503, 2001
4. Pemberton, L.F. and Paschal, B.M.: Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic: 6, 187-198, 2005
5. Moore, M.S. and Blobel, G.: A G protein involved in nucleocytoplasmic transport: the role of Ran. Trends Biochem Sci: 19, 211-216, 1994
6. Moroianu, J.: Nuclear import and export: transport factors, mechanisms and regulation. Crit Rev Eukaryot Gene Expr: 9, 89-106, 1999
7. Weis, K., Mattaj, I.W. and Lamond, A.I.: Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science: 268, 1049-1053, 1995
8. Kohler, M., Ansieau, S., Prehn, S., Leutz, A., Haller, H. and Hartmann, E.: Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family. FEBS Lett: 417, 104-108, 1997
9. Nachury, M.V., Ryder, U.W., Lamond, A.I. and Weis, K.: Cloning and characterization of hSRP1 gamma, a tissue-specific nuclear transport factor. Proc Natl Acad Sci U S A: 95, 582-587, 1998
10. Cortes, P., Ye, Z.S. and Baltimore, D.: RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRP1. Proc Natl Acad Sci U S A: 91, 7633-7637, 1994
11. Kohler, M., Speck, C., Christiansen, M., Bischoff, F.R., Prehn, S., Haller, H., Gorlich, D. and Hartmann, E.: Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. Mol Cell Biol: 19, 7782-7791, 1999
12. Seki, T., Tada, S., Katada, T. and Enomoto, T.: Cloning of a cDNA encoding a novel importin-alpha homologue, Qip1: discrimination of Qip1 and Rch1 from hSrp1 by their ability to interact with DNA helicase Q1/RecQL. Biochem Biophys Res Commun: 234, 48-53, 1997
13. Jans, D.A., Xiao, C.Y. and Lam, M.H.: Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays: 22, 532-544, 2000
14. Huber, J., Cronshagen, U., Kadokura, M., Marshallsay, C., Wada, T., Sekine, M. and Luhrmann, R.: Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J: 17, 4114-4126, 1998
15. Rollenhagen, C., Muhlhausser, P., Kutay, U. and Pante, N.: Importin beta-depending nuclear import pathways: role of the adapter proteins in the docking and releasing steps. Mol Biol Cell: 14, 2104-2115, 2003
16. Lee, S.J., Sekimoto, T., Yamashita, E., Nagoshi, E., Nakagawa, A., Imamoto, N., Yoshimura, M., Sakai, H., Chong, K.T., Tsukihara, T. et al.: The structure of importin-beta bound to SREBP-2: nuclear import of a transcription factor. Science: 302, 1571-1575, 2003
17. Nagoshi, E. and Yoneda, Y.: Dimerization of sterol regulatory element-binding protein 2 via the helix-loop-helix-leucine zipper domain is a prerequisite for its nuclear localization mediated by importin beta. Mol Cell Biol: 21, 2779-2789, 2001
18. Sorokin, A.V., Kim, E.R. and Ovchinnikov, L.P.: Nucleocytoplasmic transport of proteins. Biochemistry (Mosc): 72, 1439-1457, 2007
19. Mosammaparast, N. and Pemberton, L.F.: Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol: 14, 547-556, 2004
20. Pollard, V.W., Michael, W.M., Nakielny, S., Siomi, M.C., Wang, F. and Dreyfuss, G.: A novel receptor-mediated nuclear protein import pathway. Cell: 86, 985-994, 1996
21. Kataoka, N., Bachorik, J.L. and Dreyfuss, G.: Transportin-SR, a nuclear import receptor for SR proteins. J Cell Biol: 145, 1145-1152, 1999
22. Lai, M.C., Lin, R.I., Huang, S.Y., Tsai, C.W. and Tarn, W.Y.: A human importin-beta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins. J Biol Chem: 275, 7950-7957, 2000
23. Kutay, U. and Guttinger, S.: Leucine-rich nuclear-export signals: born to be weak. Trends Cell Biol: 15, 121-124, 2005
24.Yoneda, Y., Hieda, M., Nagoshi, E. and Miyamoto, Y.: Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct: 24, 425-433, 1999
25. Kim, V.N.: MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol: 14, 156-159, 2004
26. Mingot, J.M., Kostka, S., Kraft, R., Hartmann, E. and Gorlich, D.: Importin 13: a novel mediator of nuclear import and export. EMBO J: 20, 3685-3694, 2001
27. Lin, Q., Weis, S., Yang, G., Weng, Y.H., Helston, R., Rish, K., Smith, A., Bordner, J., Polte, T., Gaunitz, F. et al.: Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem: 282, 20621-20633, 2007
28. Seternes, O.M., Johansen, B., Hegge, B., Johannessen, M., Keyse, S.M. and Moens, U.: Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress. Mol Cell Biol: 22, 6931-6945, 2002
29. Kuge, S., Toda, T., Iizuka, N. and Nomoto, A.: Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells: 3, 521-532, 1998
30. Reina, C.P., Zhong, X. and Pittman, R.N.: Proteotoxic stress increases nuclear localization of ataxin-3. Hum Mol Genet, 2009
31. Furuta, M., Kose, S., Koike, M., Shimi, T., Hiraoka, Y., Yoneda, Y., Haraguchi, T. and Imamoto, N.: Heat-shock induced nuclear retention and recycling inhibition of importin alpha. Genes Cells: 9, 429-441, 2004
32. Kodiha, M., Chu, A., Matusiewicz, N. and Stochaj, U.: Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ: 11, 862-874, 2004
33. Wang, W., Yang, X., Kawai, T., Lopez de Silanes, I., Mazan-Mamczarz, K., Chen, P., Chook, Y.M., Quensel, C., Kohler, M. and Gorospe, M.: AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1: involvement in the nuclear import of RNA-binding protein HuR. J Biol Chem: 279, 48376-48388, 2004
34. Yasuhara, N., Takeda, E., Inoue, H., Kotera, I. and Yoneda, Y.: Importin alpha/beta-mediated nuclear protein import is regulated in a cell cycle-dependent manner. Exp Cell Res: 297, 285-293, 2004
35. Harel, A. and Forbes, D.J.: Importin beta: conducting a much larger cellular symphony. Mol Cell: 16, 319-330, 2004
36. Lau, C.K., Delmar, V.A., Chan, R.C., Phung, Q., Bernis, C., Fichtman, B., Rasala, B.A. and Forbes, D.J.: Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly. Mol Biol Cell: 20, 4043-4058, 2009
37. Arnaoutov, A., Azuma, Y., Ribbeck, K., Joseph, J., Boyarchuk, Y., Karpova, T., McNally, J. and Dasso, M.: Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat Cell Biol: 7, 626-632, 2005
38. Scott, R.J., Cairo, L.V., Van de Vosse, D.W. and Wozniak, R.W.: The nuclear export factor Xpo1p targets Mad1p to kinetochores in yeast. J Cell Biol: 184, 21-29, 2009
39.Giagtzoglou, N., Lin, Y.Q., Haueter, C. and Bellen, H.J.: Importin 13 regulates neurotransmitter release at the Drosophila neuromuscular junction. J Neurosci: 29, 5628-5639, 2009
40.Weinmann, L., Hock, J., Ivacevic, T., Ohrt, T., Mutze, J., Schwille, P., Kremmer, E., Benes, V., Urlaub, H. and Meister, G.: Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell: 136, 496-507, 2009
41.Anderson, P. and Kedersha, N.: RNA granules. J Cell Biol: 172, 803-808, 2006
42.Kosik, K.S. and Krichevsky, A.M.: The message and the messenger: delivering RNA in neurons. Sci STKE: 2002, pe16, 2002
43.Barbee, S.A., Estes, P.S., Cziko, A.M., Hillebrand, J., Luedeman, R.A., Coller, J.M., Johnson, N., Howlett, I.C., Geng, C., Ueda, R. et al.: Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron: 52, 997-1009, 2006
44.Kanai, Y., Dohmae, N. and Hirokawa, N.: Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron: 43, 513-525, 2004
45.Anderson, P. and Kedersha, N.: RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol: 10, 430-436, 2009
46.Kotaja, N. and Sassone-Corsi, P.: The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol: 8, 85-90, 2007
47.Nagamori, I. and Sassone-Corsi, P.: The chromatoid body of male germ cells: epigenetic control and miRNA pathway. Cell Cycle: 7, 3503-3508, 2008
48.Kotaja, N., Bhattacharyya, S.N., Jaskiewicz, L., Kimmins, S., Parvinen, M., Filipowicz, W. and Sassone-Corsi, P.: The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A: 103, 2647-2652, 2006
49.Sheth, U. and Parker, R.: Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science: 300, 805-808, 2003
50.Coller, J. and Parker, R.: General translational repression by activators of mRNA decapping. Cell: 122, 875-886, 2005
51.Teixeira, D., Sheth, U., Valencia-Sanchez, M.A., Brengues, M. and Parker, R.: Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA: 11, 371-382, 2005
52.Brengues, M., Teixeira, D. and Parker, R.: Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science: 310, 486-489, 2005
53.Sheth, U. and Parker, R.: Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell: 125, 1095-1109, 2006
54.Decker, C.J., Teixeira, D. and Parker, R.: Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol: 179, 437-449, 2007
55.Beckham, C., Hilliker, A., Cziko, A.M., Noueiry, A., Ramaswami, M. and Parker, R.: The DEAD-box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae P-bodies. Mol Biol Cell: 19, 984-993, 2008
56.Teixeira, D. and Parker, R.: Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell: 18, 2274-2287, 2007
57.Eulalio, A., Behm-Ansmant, I. and Izaurralde, E.: P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol: 8, 9-22, 2007
58.Lotan, R., Bar-On, V.G., Harel-Sharvit, L., Duek, L., Melamed, D. and Choder, M.: The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev: 19, 3004-3016, 2005
59.Reijns, M.A., Alexander, R.D., Spiller, M.P. and Beggs, J.D.: A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci: 121, 2463-2472, 2008
60.Hoyle, N.P., Castelli, L.M., Campbell, S.G., Holmes, L.E. and Ashe, M.P.: Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. J Cell Biol: 179, 65-74, 2007
61.Buchan, J.R., Muhlrad, D. and Parker, R.: P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol: 183, 441-455, 2008
62.Grousl, T., Ivanov, P., Frydlova, I., Vasicova, P., Janda, F., Vojtova, J., Malinska, K., Malcova, I., Novakova, L., Janoskova, D. et al.: Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci: 122, 2078-2088, 2009
63.Gaillard, H. and Aguilera, A.: A novel class of mRNA-containing cytoplasmic granules are produced in response to UV-irradiation. Mol Biol Cell: 19, 4980-4992, 2008
64.Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I.J., Stahl, J. and Anderson, P.: Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell: 13, 195-210, 2002
65.Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M.J., Scheuner, D., Kaufman, R.J., Golan, D.E. and Anderson, P.: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol: 169, 871-884, 2005
66.Kedersha, N., Cho, M.R., Li, W., Yacono, P.W., Chen, S., Gilks, N., Golan, D.E. and Anderson, P.: Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol: 151, 1257-1268, 2000
67.Eulalio, A., Behm-Ansmant, I., Schweizer, D. and Izaurralde, E.: P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol: 27, 3970-3981, 2007
68.Cougot, N., Babajko, S. and Seraphin, B.: Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol: 165, 31-40, 2004
69.Anderson, P. and Kedersha, N.: Stress granules: the Tao of RNA triage. Trends Biochem Sci: 33, 141-150, 2008
70.Parker, R. and Sheth, U.: P bodies and the control of mRNA translation and degradation. Mol Cell: 25, 635-646, 2007
71.Fillman, C. and Lykke-Andersen, J.: RNA decapping inside and outside of processing bodies. Curr Opin Cell Biol: 17, 326-331, 2005
72.Ohn, T., Kedersha, N., Hickman, T., Tisdale, S. and Anderson, P.: A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol: 10, 1224-1231, 2008
73.Liu, J., Rivas, F.V., Wohlschlegel, J., Yates, J.R., 3rd, Parker, R. and Hannon, G.J.: A role for the P-body component GW182 in microRNA function. Nat Cell Biol: 7, 1261-1266, 2005
74.Yu, J.H., Yang, W.H., Gulick, T., Bloch, K.D. and Bloch, D.B.: Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA: 11, 1795-1802, 2005
75.Ferraiuolo, M.A., Basak, S., Dostie, J., Murray, E.L., Schoenberg, D.R. and Sonenberg, N.: A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J Cell Biol: 170, 913-924, 2005
76.Zheng, D., Ezzeddine, N., Chen, C.Y., Zhu, W., He, X. and Shyu, A.B.: Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J Cell Biol: 182, 89-101, 2008
77.Andrei, M.A., Ingelfinger, D., Heintzmann, R., Achsel, T., Rivera-Pomar, R. and Luhrmann, R.: A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA: 11, 717-727, 2005
78.Stoecklin, G., Mayo, T. and Anderson, P.: ARE-mRNA degradation requires the 5'-3' decay pathway. EMBO Rep: 7, 72-77, 2006
79.Tharun, S.: Lsm1-7-Pat1 complex: a link between 3' and 5'-ends in mRNA decay? RNA Biol: 6, 228-232, 2009
80.Fenger-Gron, M., Fillman, C., Norrild, B. and Lykke-Andersen, J.: Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell: 20, 905-915, 2005
81.Stalder, L. and Muhlemann, O.: Processing bodies are not required for mammalian nonsense-mediated mRNA decay. RNA: 15, 1265-1273, 2009
82.Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I. and Filipowicz, W.: Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell: 125, 1111-1124, 2006
83.Chen, C.Y. and Shyu, A.B.: AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci: 20, 465-470, 1995
84.Barreau, C., Paillard, L. and Osborne, H.B.: AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res: 33, 7138-7150, 2005
85.Gherzi, R., Lee, K.Y., Briata, P., Wegmuller, D., Moroni, C., Karin, M. and Chen, C.Y.: A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell: 14, 571-583, 2004
86.Wilson, G.M. and Brewer, G.: The search for trans-acting factors controlling messenger RNA decay. Prog Nucleic Acid Res Mol Biol: 62, 257-291, 1999
87.Stoecklin, G., Stubbs, T., Kedersha, N., Wax, S., Rigby, W.F., Blackwell, T.K. and Anderson, P.: MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J: 23, 1313-1324, 2004
88.Lai, W.S., Carballo, E., Strum, J.R., Kennington, E.A., Phillips, R.S. and Blackshear, P.J.: Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol: 19, 4311-4323, 1999
89.Hau, H.H., Walsh, R.J., Ogilvie, R.L., Williams, D.A., Reilly, C.S. and Bohjanen, P.R.: Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. J Cell Biochem: 100, 1477-1492, 2007
90.Stoecklin, G. and Anderson, P.: In a tight spot: ARE-mRNAs at processing bodies. Genes Dev: 21, 627-631, 2007
91.Franks, T.M. and Lykke-Andersen, J.: TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev: 21, 719-735, 2007
92.Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H. and Han, J.: Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell: 120, 623-634, 2005
93.von Roretz, C. and Gallouzi, I.E.: Decoding ARE-mediated decay: is microRNA part of the equation? J Cell Biol: 181, 189-194, 2008
94.Wu, L. and Belasco, J.G.: Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell: 29, 1-7, 2008
95.Filipowicz, W., Bhattacharyya, S.N. and Sonenberg, N.: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet: 9, 102-114, 2008
96.Vasudevan, S., Tong, Y. and Steitz, J.A.: Switching from repression to activation: microRNAs can up-regulate translation. Science: 318, 1931-1934, 2007
97.Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G. and Tuschl, T.: Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell: 15, 185-197, 2004
98.Pauley, K.M., Eystathioy, T., Jakymiw, A., Hamel, J.C., Fritzler, M.J. and Chan, E.K.: Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep: 7, 904-910, 2006
99.Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E. and Filipowicz, W.: Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science: 309, 1573-1576, 2005
100.Lai, M.C., Lee, Y.H. and Tarn, W.Y.: The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell: 19, 3847-3858, 2008
101.Lai, M.C., Teh, B.H. and Tarn, W.Y.: A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J Biol Chem: 274, 11832-11841, 1999
102.Velichkova, M. and Hasson, T.: Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol: 25, 4501-4513, 2005
103.Theodore, M., Kawai, Y., Yang, J., Kleshchenko, Y., Reddy, S.P., Villalta, F. and Arinze, I.J.: Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem: 283, 8984-8994, 2008
104.Betz, C., Schlenstedt, G. and Bailer, S.M.: Asr1p, a novel yeast ring/PHD finger protein, signals alcohol stress to the nucleus. J Biol Chem: 279, 28174-28181, 2004
105.Tachibana, T., Sakaguchi, N., Miyamoto, Y., Sekimoto, T., Yoneda, Y. and Azuma, M.: Generation and characterization of a monoclonal antibody against NPI-1 subfamily of importin alpha. Hybridoma (Larchmt): 27, 285-289, 2008
106.Kedersha, N. and Anderson, P.: Mammalian stress granules and processing bodies. Methods Enzymol: 431, 61-81, 2007
107.Mazroui, R., Sukarieh, R., Bordeleau, M.E., Kaufman, R.J., Northcote, P., Tanaka, J., Gallouzi, I. and Pelletier, J.: Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol Biol Cell: 17, 4212-4219, 2006
108.Kedersha, N. and Anderson, P.: Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans: 30, 963-969, 2002
109.Cande, C., Vahsen, N., Metivier, D., Tourriere, H., Chebli, K., Garrido, C., Tazi, J. and Kroemer, G.: Regulation of cytoplasmic stress granules by apoptosis-inducing factor. J Cell Sci: 117, 4461-4468, 2004
110.Kedersha, N., Tisdale, S., Hickman, T. and Anderson, P.: Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol: 448, 521-552, 2008
111.Siomi, M.C., Eder, P.S., Kataoka, N., Wan, L., Liu, Q. and Dreyfuss, G.: Transportin-mediated nuclear import of heterogeneous nuclear RNP proteins. J Cell Biol: 138, 1181-1192, 1997
112.Guttinger, S., Muhlhausser, P., Koller-Eichhorn, R., Brennecke, J. and Kutay, U.: Transportin2 functions as importin and mediates nuclear import of HuR. Proc Natl Acad Sci U S A: 101, 2918-2923, 2004
113.Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. and Parker, R.: MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol: 7, 719-723, 2005
114.Rossi, J.J.: RNAi and the P-body connection. Nat Cell Biol: 7, 643-644, 2005
115.Leung, A.K., Calabrese, J.M. and Sharp, P.A.: Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci U S A: 103, 18125-18130, 2006
116.Kim, W.J., Back, S.H., Kim, V., Ryu, I. and Jang, S.K.: Sequestration of TRAF2 into Stress Granules Interrupts Tumor Necrosis Factor Signaling under Stress Conditions. Mol Cell Biol.: 25, 2450-2462, 2005
117.Davis, R.J.: Signal transduction by the c-Jun N-terminal kinase. Biochem Soc Symp: 64, 1-12, 1999
118.Clemens, M.J.: Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog Mol Subcell Biol: 27, 57-89, 2001
119.Bernstam, L. and Nriagu, J.: Molecular aspects of arsenic stress. J Toxicol Environ Health B Crit Rev: 3, 293-322, 2000
120.Fujimura, K., Katahira, J., Kano, F., Yoneda, Y. and Murata, M.: Selective localization of PCBP2 to cytoplasmic processing bodies. Biochim Biophys Acta: 1793, 878-887, 2009
121.Meyer, S., Temme, C. and Wahle, E.: Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol: 39, 197-216, 2004
122.Tharun, S., Muhlrad, D., Chowdhury, A. and Parker, R.: Mutations in the Saccharomyces cerevisiae LSM1 gene that affect mRNA decapping and 3' end protection. Genetics: 170, 33-46, 2005
123.Unterholzner, L. and Izaurralde, E.: SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol Cell: 16, 587-596, 2004
124.Hanz, S., Perlson, E., Willis, D., Zheng, J.Q., Massarwa, R., Huerta, J.J., Koltzenburg, M., Kohler, M., van-Minnen, J., Twiss, J.L. et al.: Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron: 40, 1095-1104, 2003
125.Boulon, S., Verheggen, C., Jady, B.E., Girard, C., Pescia, C., Paul, C., Ospina, J.K., Kiss, T., Matera, A.G., Bordonne, R. et al.: PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell: 16, 777-787, 2004
126.Katahira, J., Miki, T., Takano, K., Maruhashi, M., Uchikawa, M., Tachibana, T. and Yoneda, Y.: Nuclear RNA export factor 7 is localized in processing bodies and neuronal RNA granules through interactions with shuttling hnRNPs. Nucleic Acids Res: 36, 616-628, 2008
127.Aizer, A., Brody, Y., Ler, L.W., Sonenberg, N., Singer, R.H. and Shav-Tal, Y.: The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell: 19, 4154-4166, 2008
128.Ivanov, P.A., Chudinova, E.M. and Nadezhdina, E.S.: RNP stress-granule formation is inhibited by microtubule disruption. Cell Biol Int: 27, 207-208, 2003
129.Mollet, S., Cougot, N., Wilczynska, A., Dautry, F., Kress, M., Bertrand, E. and Weil, D.: Translationally repressed mRNA transiently cycles through stress granules during stress. Mol Biol Cell: 19, 4469-4479, 2008
130.Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. and Kutay, U.: Nuclear export of microRNA precursors. Science: 303, 95-98, 2004
131.Wang, F., Fu, X.D., Zhou, Y. and Zhang, Y.: Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells. BMB Rep: 42, 725-730, 2009
132.Aqeilan, R.I., Calin, G.A. and Croce, C.M.: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ: doi: 10.1038/cdd.2009.69, 2009
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top