跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 18:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張右檸
研究生(外文):Yu-Ning Chang
論文名稱:探討愛荷華型貝塔類澱粉胜肽在LMPG微胞環境中之結構特性
論文名稱(外文):Structural characterization of Iowa-type β-amyloid peptide in LMPG micelles
指導教授:林達顯
指導教授(外文):Ta-Hsien Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:β-類澱粉胜肽家族性阿茲海默症核磁共振光譜儀微胞
外文關鍵詞:β-Amyloid peptidefamilial Alzheimer’s diseaseNMRLMPG micelles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症是老年人口中最常見的失智症,為一種神經退化性疾病。目前研究阿茲海默症致病原因最主要的一個假說是類澱粉蛋白串聯假說(Amyloid cascade hypothesis),此假說認為β-類澱粉胜肽(β-amyloid peptide; Aβ)的聚集(aggregation)是造成阿茲海默症的主要原因。Aβ約含有39-42個殘基,是β-類澱粉前驅蛋白(β-amyloid precursor protein; βAPP)經由水解的代謝產物。Aβ在聚集過程中涉及到結構的改變與自我本身的聚集,表示結構的性質在聚集過程中扮演相當重要的角色。先前研究模擬細胞膜的環境推測細胞膜會與Aβ有交互作用並且其交互作用可能會改變Aβ的結構特性與穩定度,有研究認為在細胞膜環境下會抑制Aβ的聚集,也有研究認為會促進Aβ的聚集,因此目前對β-類澱粉胜肽聚集的分子機制尚未有所定論。本篇研究主要目的是想探討Aβ在脂質環境中的結構特性。以帶負電的LMPG微胞(micelles)及造成家族性阿茲海默症的Iowa突變種(Aβ40(D23N))為模型,利用核磁共振光譜學(nuclear magnetic resonance spectroscopy)、圓二色光譜學(circular dichroism spectroscopy)、Th-T螢光光譜以及穿透式電子顯微鏡(TEM)探討Aβ與脂質的交互作用。透過比較Aβ40 (D23N)在水溶液環境中與LMPG微胞環境中的結構與聚集行為,結果發現Aβ40(D23N)會與LMPG微胞發生交互作用,而此交互作用會促進Aβ40(D23N)之螺旋傾向(helix propensity)並且會抑制Aβ40(D23N)之聚集。經由核磁共振光譜分析得知Aβ40(D23N)是以兩段螺旋結構鑲嵌於LMPG微胞中。此結果提供了Aβ與細胞膜交互作用機制的訊息,以及其對聚集行為之影響。

Alzheimer’s disease (AD) is the most common cause of dementia in elderly people. It is a chronic neurodegenerative disease. Currently, the hypothesis for the pathogenic mechanism of AD is amyloid cascade hypothesis. It states that the aggregation of β-amyloid (Aβ) is the primary cause of AD. Aβ contains 39-42 residues amino acid. It was a proteolytic product derived fromβ-amyloid precursor protein (βAPP). The aggregation process of Aβ involves conformational changes and self-assembly, indicating that the structural property plays an important role in Aβ aggregation. Previous studies also reported that the aggregation of Aβ was linked to its interaction with cell membrane-like enviroment. The interaction between Aβ and cell membrane might alter the structural property and conformational stability of Aβ. Some studies suppoted the view that cell membrane environment might inhibit the aggregation of Aβ, whereas others thought that cell membrane enviroments would promote the aggregation of Aβ. In this study, we used negatively charged LMPG micelles and familial Alzheimer’s disease-linked Iowa-type (Aβ40(D23N)) as model systems for investigating the Aβ-cell membrane interaction mechanism, and applied nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, thioflavine-T (Th-T) fluorometric assay and transmission electron microscopy (TEM) to characterize the interaction between Aβ and membrane lipid. By compairing the structure and aggregation behavior of Aβ40(D23N) in aqueous solution and LMPG micelles environment, we obtained that LMPG micelles would interact with Aβ40(D23N), leading to an increase of the α-helical propensity of Aβ40(D23N) and an inhibition of Aβ40(D23N) aggregation. Structural analysis showed that Aβ40(D23N) interacted with LMPG micelles through two short α-helical regions, L17VFFAENVGS26 and K28GAIIGLM35. These results may provide the information about the mechanism of Aβ-cell membrane interaction.
中文摘要 i
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
附錄 ix
第一章 緒論 1
1-1 阿茲海默症(Alzheimer's disease) 1
1-1-1 阿茲海默症的臨床症狀 1
1-1-2 阿茲海默症的病理特徵 2
1-1-3 類澱粉斑塊(Amyloid plaques) 2
1-1-4 神經纖維糾結物(Neurofibrillary tangles) 3
1-2 阿茲海默症的分類 4
1-2-1 偶發性阿茲海默症(Sporadic Alzheimer’s disease;SAD) 4
1-2-2 家族性阿茲海默症(Familial Alzheimer’s disease;FAD) 5
1-3 類澱粉胜肽連鎖反應假說(Amyloid cascade hypothesis) 7
1-4 -類澱粉胜肽聚集之探討 9
1-4-1 野生型A 9
1-4-2 突變型Aβ 10
1-5 以結構的觀點探討Aβ之聚集 11
1-6 阿茲海默症之診斷與治療 13
1-7 研究目的與設計 15
第二章 實驗材料與方法 17
2-1 實驗藥品 17
2-2 實驗儀器 19
2-3 樣品製備 20
2-3-1 質體建構(Plasmid construction)與轉型作用(Transformation) 20
2-3-2 酵母菌泛素水解酶 (Yeast ubiquitin hydrolase-1; YUH-1)的製備 22
2-3-3 β-類澱粉胜肽融合蛋白A40(D23N)及A40(L17A/F19A/ D23N)的製備 23
2-4 圓二色光譜分析 (Circlar Dichroism) 26
2-5 Th-T螢光光譜分析 (Thioflavin T fluorescence spectroscopy) 27
2-6 穿透式電子顯微鏡 (Transmission Electron Microscopy) 28
2-7 核磁共振光譜 (Nuclear Magnetic Resonance Spectroscopy) 28
第三章 結果 31
3-1 樣品的製備 31
3-1-1 YUH-1的製備 31
3-1-2 野生型及突變型β-類澱粉胜肽的製備 32
3-2 Iowa突變型β-類澱粉胜肽和LMPG micelles的交互作用 37
3-2-1 Iowa突變型β-類澱粉胜肽在水溶液與LMPG micelles環境中的圓二色光譜圖 37
3-2-2 Iowa突變型β-類澱粉胜肽在水溶液與LMPG micelles環境中的核磁共振光譜圖 40
3-3 LMPG micelle環境對A40(D23N)聚集行為之影響 44
3-3-1 A40(D23N)在水溶液環境與LMPG micelles環境中聚集速率之比較 44
3-3-2 比較A40(D23N)在水溶液及LMPG micelles環境中二級結構轉變之速率 46
3-3-3 比較A40(D23N)在水溶液環境與LMPG micelles環境中形成纖維之速率 47
3-4 Iowa突變型β-類澱粉胜肽與LMPG micelles之交互作用機制 51
3-4-1 A40(D23N)在LMPG micelles環境下之二級結構 51
3-5 脂質帶電荷對Iowa突變型β-類澱粉胜肽與微胞的交互作用之影響 53
3-5-1 Iowa突變型β-類澱粉胜肽在水溶液與LMPC micelles環境中的圓二色光譜圖 53
3-5-2 Iowa突變型β-類澱粉胜肽在水溶液與LMPC micelles環境中的核磁共振光譜圖 55
3-5-3 A40(D23N)在LMPG micelles環境與LMPC micelles環境中聚集速率之比較 57
3-5-4 比較A40(D23N)在LMPG micelles與LMPC micelles環境中二級結構轉變之速率 58
第四章 結論 59
4-1 A40(D23N)與LMPG micelles之交互作用 59
4-2 A40(D23N)與LMPG micelles交互作用抑制突變型類澱粉胜肽之聚集行為 59
4-3 A40(D23N)與LMPG micelles交互作用機制 60
第五章 討論 61
參考文獻 70


圖目錄
圖 1-2-1 β-類澱粉前驅蛋白(APP)水解途徑及家族性阿茲海默症突變位置。…………..6
圖 1-3-1 類澱粉胜肽連鎖反應假說(Amyloid cascade hypothesis)示意圖。………….....8
圖 1-5-1 研究目的與設計示意圖。…......................……………………………………...16
圖 2-3-1 His6-ubiquitin表現載體之建立。….……………………….………..………….21
圖 2-3-2 融合蛋白A40(D23N)純化流程圖。……….………………………....…………24
圖 3-1-1 表達酵母菌泛素水解酶(Yeast Ubiquitin Hydrolase;YUH-1)之SDS-PAGE。...31
圖 3-1-2 YUH-1經鎳親和性管柱層析(Immobilized Metal Affinity Chromatography)純化後以15% SDS-PAGE分析之電泳圖。………………………………………………………32
圖 3-1-3 表達β-類澱粉胜肽融合蛋白之SDS-PAGE。……………..…………..………..33
圖 3-1-4 His6-ubiquitin-Aβ40(D23N)融合蛋白經鎳親和性管柱層析純化後以15% SDS-PAGE分析之電泳圖。…………………………………….……………………………34
圖 3-1-5 H6Ub-Aβ40(D23N)水解前後之15% Tricine-SDS-PAGE。……………………..34
圖 3-1-6 鹼性溶液純化Aβ40(D23N)之HPLC層析圖。…………………….……………34
圖 3-1-7 酸性溶液純化Aβ40(D23N)之HPLC層析圖。……….…………………………34
圖 3-1-8 Aβ40(D23N)之質譜圖。…………..………………………….…………………..36
圖 3-1-9 Aβ40(D23N)經HPLC純化後之15%Tricine-SDS-PAGE。……………………...36
圖 3-2-1 Aβ40(D23N) 在水溶液及LMPG micelles環境下的初始二級結構。….………38
圖 3-2-2 Aβ40(D23N) 在水溶液環境下的初始二級結構三重複。……………………39
圖 3-2-3 Aβ40(D23N) 在50 mM LMPG micelles環境下的初始二級結構三重複。……39
圖 3-2-4 Aβ40(D23N) 在水溶液環境下的1H-HSQC光譜圖。…………………………41
圖 3-2-5 Aβ40(D23N) 在LMPG micelles環境下的1H-HSQC光譜圖。………………42
圖 3-2-6 Aβ40(D23N)在水溶液與LMPG micelles環境下的1H-HSQC光譜圖比較。..43
圖 3-3-1 Aβ40(D23N) 在水溶液與LMPG micelles環境下凝聚機制動力學之Th-T螢光光譜圖。………………………………………………………………………………………45
圖 3-3-2 Aβ40(D23N) 在水溶液環境及LMPG micelle環境下的二級結構變化。……..46
圖 3-3-3 Aβ40(D23N) 在水溶液環境與LMPG micelles環境下的纖維型態比較。.........47
圖 3-3-4 Aβ40(D23N)水溶液與LMPG micelles環境下隨著時間對纖維型態及纖維形成速率之比較。重複一。…………………..…………………………………………………....48
圖 3-3-5 Aβ40(D23N)水溶液與LMPG micelles環境下隨著時間對纖維型態及纖維形成速率之比較。重複二。…………………..…………………………………………………....49
圖 3-3-6 Aβ40(D23N)水溶液與LMPG micelles環境下隨著時間對纖維型態及纖維形成速率之比較。重複三。…………………..…………………………………………………....50
圖 3-4-1 Aβ40(D23N)在水溶液與LMPG micelles環境下的13C化學位移比較圖。...….52
圖 3-5-1 Aβ40(D23N) 在LMPG及LMPC環境下的1H-HSQC重疊光譜圖。………….54
圖 3-5-2 Aβ40(D23N) 與LMPG micelles交互作用機制。…………………….…………56
圖 3-5-3 Aβ40(D23N) 在LMPG micelles與LMPC micelles環境下凝聚機制動力學之Th-T螢光光譜圖。…………………………...………………………………………………57
圖 3-5-4 Aβ40(D23N)在LMPG micelle 及LMPC micelles環境下的二級結構變化。…58
圖 5-1 Aβ40(D23N) 在5 mM、20 mM與100 mM LMPG環境下的1H-HSQC重疊光譜圖。…………………………………………………………………………………………63
圖 5-2 Aβ40(D23N) 在100 % LMPG、75 % LMPG 25 % LMPC與50 % LMPG 50 % LMPC環境下的1H-HSQC重疊光譜圖。…………………………………………………64
圖 5-3 Aβ40(L17A/F19A/D23N) 在水溶液、LMPG micelles與LMPC micelles環境下的1H-HSQC光譜比較圖。…………………………………………………………….….…65
圖 5-4 Aβ40(L17A/F19A/D23N) 在水溶液、LMPG及LMPC micelles環境下的初始二級結構。……………………………………………………………………………………66
圖 5-5 Aβ40(L17A/F19A/D23N) 在水溶液、LMPG與LMPC micelles環境下凝聚機制動力學之Th-T螢光光譜圖。………...………………………………………………………67


表目錄
表 2-3-1 酵母菌泛素水解酶純化之緩衝溶液。…………………………………....…….22
表 2-3-2 β-類澱粉胜肽純化之緩衝溶液………….………………………………………24
表 2-3-3高效液相層析(HPLC)移動相程式。...........……………………………………...25
表 2-4-1圓二色光譜之蛋白質二級結構之波長特徵。……………………………..…….26
表 2-7-1二十種胺基酸之H、13C、13C與13C'二級結構傾向化學位移(chemical shift)參考值。…...……………………………………………………………………………30
表 3-2-1 Aβ40(D23N)在H2O及LMPG micelles環境中二級結構分析。………………......38
表 3-5-1 Aβ40(D23N)在LMPG及LMPC micelles環境中二級結構分析。………………..54
表 5-1 Aβ40(L17A/F19A/D23N)在H2O、LMPG及LMPC micelles環境中二級結構分析。……………………………………………………………………………………………66


























附錄
附圖1 Aβ40(D23N) 在200 mM LMPG micelles中骨架原子化學位移。………………..68




1. (2015) 2015 Alzheimer's disease facts and figures. Alzheimer's & dementia : the journal of the Alzheimer's Association 11, 332-384
2. Mucke, L. (2009) Neuroscience: Alzheimer's disease. Nature 461, 895-897
3. Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N., and Murtagh, F. R. (1995) An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clinical anatomy (New York, N.Y.) 8, 429-431
4. Anand, R., Gill, K. D., and Mahdi, A. A. (2014) Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 76 Pt A, 27-50
5. Bahmanyar, S., Higgins, G. A., Goldgaber, D., Lewis, D. A., Morrison, J. H., Wilson, M. C., Shankar, S. K., and Gajdusek, D. C. (1987) Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer's disease. Science 237, 77-80
6. De Strooper, B., Vassar, R., and Golde, T. (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature reviews. Neurology 6, 99-107
7. Glenner GG, W. C. (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 120, 885-890.
8. Zhang, Y. W., Thompson, R., Zhang, H., and Xu, H. (2011) APP processing in Alzheimer's disease. Molecular brain 4, 3
9. Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., and Herms, J. (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26, 7212-7221
10. Turner, P. R., O'Connor, K., Tate, W. P., and Abraham, W. C. (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progress in neurobiology 70, 1-32
11. Duce, J. A., Tsatsanis, A., Cater, M. A., James, S. A., Robb, E., Wikhe, K., Leong, S. L., Perez, K., Johanssen, T., Greenough, M. A., Cho, H. H., Galatis, D., Moir, R. D., Masters, C. L., McLean, C., Tanzi, R. E., Cappai, R., Barnham, K. J., Ciccotosto, G. D., Rogers, J. T., and Bush, A. I. (2010) Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell 142, 857-867
12. Tanaka, S., Nakamura, S., Ueda, K., Kameyama, M., Shiojiri, S., Takahashi, Y., Kitaguchi, N., and Ito, H. (1988) Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer's disease. Biochemical and biophysical research communications 157, 472-479
13. Schlossmacher, M. G., Ostaszewski, B. L., Hecker, L. I., Celi, A., Haass, C., Chin, D., Lieberburg, I., Furie, B. C., Furie, B., and Selkoe, D. J. (1992) Detection of distinct isoform patterns of the beta-amyloid precursor protein in human platelets and lymphocytes. . Neurobiology of aging 13, 421-434
14. Brunden, K. R., Trojanowski, J. Q., and Lee, V. M. (2009) Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 8, 783-793
15. Mokhtar, S. H., Bakhuraysah, M. M., Cram, D. S., and Petratos, S. (2013) The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton. International journal of Alzheimer's disease 2013, 910502
16. Shinohara, M., Fujioka, S., Murray, M. E., Wojtas, A., Baker, M., Rovelet-Lecrux, A., Rademakers, R., Das, P., Parisi, J. E., Graff-Radford, N. R., Petersen, R. C., Dickson, D. W., and Bu, G. (2014) Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease. Brain 137, 1533-1549
17. Luchsinger, J. A., Cheng, D., Tang, M. X., Schupf, N., and Mayeux, R. (2012) Central obesity in the elderly is related to late-onset Alzheimer disease. Alzheimer disease and associated disorders 26, 101-105
18. A. Armstrong, R. (2013) Review article What causes alzheimer’s disease? Folia Neuropathologica 3, 169-188
19. Corder EH, S. A., Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. . (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921-923
20. Katzman, R., Kang, D., and Thomas, R. (1998) Interaction of apolipoprotein E epsilon 4 with other genetic and non-genetic risk factors in late onset Alzheimer disease: problems facing the investigator. Neurochem Res 23, 369-376
21. Dar-Nimrod, I., Chapman, B. P., Franks, P., Robbins, J., Porsteinsson, A., Mapstone, M., and Duberstein, P. R. (2012) Personality factors moderate the associations between apolipoprotein genotype and cognitive function as well as late onset Alzheimer disease. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry 20, 1026-1035
22. Schmechel, D. E., Saunders, A. M., Strittmatter, W. J., Crain, B. J., Hulette, C. M., Joo, S. H., Pericak-Vance, M. A., Goldgaber, D., and Roses, A. D. (1993) Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90, 9649-9653
23. Bagyinszky, E., Youn, Y. C., An, S. S., and Kim, S. (2014) The genetics of Alzheimer's disease. Clinical interventions in aging 9, 535-551
24. van Duijn, C. M., Hendriks, L., Farrer, L. A., Backhovens, H., Cruts, M., Wehnert, A., Hofman, A., and Van Broeckhoven, C. (1994) A population-based study of familial Alzheimer disease: linkage to chromosomes 14, 19, and 21. Am J Hum Genet 55, 714-727
25. Hardy, J. A., and Higgins, G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185
26. Selkoe, D. J. (2002) Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. Journal of Clinical Investigation 110, 1375-1381
27. Swomley, A. M., Forster, S., Keeney, J. T., Triplett, J., Zhang, Z., Sultana, R., and Butterfield, D. A. (2014) Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta 1842, 1248-1257
28. Lichtenthaler, S. F. (2012) Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Curr. Alzheimer Res. 9, 165-177
29. Steiner, H., Fluhrer, R., and Haass, C. (2008) Intramembrane proteolysis by gamma-secretase. J Biol Chem 283, 29627-29631
30. Lee, K. F., Soares, C., and Beique, J. C. (2012) Examining form and function of dendritic spines. Neural plasticity 2012, 704103
31. Gandy, S. (2005) The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest 115, 1121-1129
32. Mohandas, E., Rajmohan, V., and Raghunath, B. (2009) Neurobiology of Alzheimer's disease. Indian J Psychiatry 51, 55-61
33. Reitz, C. (2012) Alzheimer's disease and the amyloid cascade hypothesis: a critical review. International journal of Alzheimer's disease 2012, 369808
34. Harrison, R. S., Sharpe, P. C., Singh, Y., and Fairlie, D. P. (2007) Amyloid peptides and proteins in review. Reviews of physiology, biochemistry and pharmacology 159, 1-77
35. Kanekiyo, T., Cirrito, J. R., Liu, C. C., Shinohara, M., Li, J., Schuler, D. R., Shinohara, M., Holtzman, D. M., and Bu, G. (2013) Neuronal clearance of amyloid-beta by endocytic receptor LRP1. J Neurosci 33, 19276-19283
36. Wang, Y. J., Zhou, H. D., and Zhou, X. F. (2006) Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives. Drug discovery today 11, 931-938
37. Lam FC, L. R., Lu P, et al. (2001) β-Amyloid efflux mediated by P-glycoprotein. 76, 1121-1128
38. Sadigh-Eteghad, S., Sabermarouf, B., Majdi, A., Talebi, M., Farhoudi, M., and Mahmoudi, J. (2015) Amyloid-beta: a crucial factor in Alzheimer's disease. Medical principles and practice : international journal of the Kuwait University, Health Science Centre 24, 1-10
39. Roychaudhuri, R., Yang, M., Deshpande, A., Cole, G. M., Frautschy, S., Lomakin, A., Benedek, G. B., and Teplow, D. B. (2013) C-terminal turn stability determines assembly differences between Abeta40 and Abeta42. J Mol Biol 425, 292-308
40. Weggen S, E. J., Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH. (2001) A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212-216
41. Lomakin A, T. D., Benedek GB. (2005) Quasielastic light scattering for protein assembly studies. Methods Mol Biol. 299, 153-174
42. Campanero-Rhodes, M. A., Menendez, M., Saiz, J. L., Sanz, L., Calvete, J. J., and Solis, D. (2006) Zinc ions induce the unfolding and self-association of boar spermadhesin PSP-I, a protein with a single CUB domain architecture, and promote its binding to heparin. Biochemistry 45, 8227-8235
43. Leissring, M. A. (2008) The AbetaCs of Abeta-cleaving proteases. J Biol Chem 283, 29645-29649
44. Krone, M. G., Baumketner, A., Bernstein, S. L., Wyttenbach, T., Lazo, N. D., Teplow, D. B., Bowers, M. T., and Shea, J. E. (2008) Effects of familial Alzheimer's disease mutations on the folding nucleation of the amyloid beta-protein. J Mol Biol 381, 221-228
45. Mortilla, M., Amaducci, L., Bruni, A., Montesi, M. P., Trubnikov, A., De Cataldo, S., Pallanti, S., Pazzagli, A., Grecu, L., Servi, P., and et al. (1994) Absence of APP713 mutation in Italian and Russian families with schizophrenia. Neuroscience letters 165, 45-47
46. Lam, A. R., Teplow, D. B., Stanley, H. E., and Urbanc, B. (2008) Effects of the Arctic (E22-->G) mutation on amyloid beta-protein folding: discrete molecular dynamics study. . Journal of the American Chemical Society 130, 17413-17422
47. Kumar-Singh, S., Julliams, A., Nuydens, R., Ceuterick, C., Labeur, C., Serneels, S., Vennekens, K. l., Van Osta, P., Geerts, H., De Strooper, B., and Van Broeckhoven, C. (2002) In Vitro Studies of Flemish, Dutch, and Wild-Type β-Amyloid Provide Evidence for Two-Staged Neurotoxicity. Neurobiology of Disease 11, 330-340
48. Van Nostrand, W. E., Melchor, J. P., Cho, H. S., Greenberg, S. M., and Rebeck, G. W. (2001) Pathogenic effects of D23N Iowa mutant amyloid beta -protein. J Biol Chem 276, 32860-32866
49. Vivekanandan, S., Brender, J. R., Lee, S. Y., and Ramamoorthy, A. (2011) A partially folded structure of amyloid-beta(1-40) in an aqueous environment. Biochem Biophys Res Commun 411, 312-316
50. Hou, L., Shao, H., Zhang, Y., Li, H., Menon, N. K., Neuhaus, E. B., Brewer, J. M., Byeon, I. J., Ray, D. G., Vitek, M. P., Iwashita, T., Makula, R. A., Przybyla, A. B., and Zagorski, M. G. (2004) Solution NMR studies of the A beta(1-40) and A beta(1-42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 126, 1992-2005
51. Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99, 16742-16747
52. McLaurin, J., and Chakrabartty, A. (1997) Characterization of the interactions of Alzheimer beta-amyloid peptides with phospholipid membranes. Eur J Biochem 245, 355-363
53. Kremer, J. J., and Murphy, R. M. (2003) Kinetics of adsorption of beta-amyloid peptide Abeta(1-40) to lipid bilayers. Journal of biochemical and biophysical methods 57, 159-169
54. Jarvet, J., Danielsson, J., Damberg, P., Oleszczuk, M., and Graslund, A. (2007) Positioning of the Alzheimer Abeta(1-40) peptide in SDS micelles using NMR and paramagnetic probes. J Biomol NMR 39, 63-72
55. Chen, Y. R., Huang, H. B., Lo, C. J., Wang, C. C., Su, C. L., Liu, H. T., Shiao, M. S., Lin, T. H., and Chen, Y. C. (2011) Abeta40(L17A/F19A) mutant diminishes the aggregation and neurotoxicity of Abeta40. Biochem Biophys Res Commun 405, 91-95
56. Liang, C. T., Huang, H. B., Wang, C. C., Chen, Y. R., Chang, C. F., Shiao, M. S., Chen, Y. C., and Lin, T. H. (2016) L17A/F19A Substitutions Augment the alpha-Helicity of beta-Amyloid Peptide Discordant Segment. PLoS One 11, e0154327
57. Chen, Y. R., Huang, H. B., Lo, C. J., Wang, C. C., Ho, L. K., Liu, H. T., Shiao, M. S., Lin, T. H., and Chen, Y. C. (2013) Effect of alanine replacement of l17 and f19 on the aggregation and neurotoxicity of arctic-type abeta40. PLoS One 8, e61874
58. Lo, C. J., Wang, C. C., Huang, H. B., Chang, C. F., Shiao, M. S., Chen, Y. C., and Lin, T. H. (2015) The Arctic mutation accelerates Abeta aggregation in SDS through reducing the helical propensity of residues 15-25. Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis 22, 8-18
59. Barrett, P. J., Song, Y., Van Horn, W. D., Hustedt, E. J., Schafer, J. M., Hadziselimovic, A., Beel, A. J., and Sanders, C. R. (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336, 1168-1171
60. Jia, Q., Deng, Y., and Qing, H. (2014) Potential therapeutic strategies for Alzheimer's disease targeting or beyond beta-amyloid: insights from clinical trials. BioMed research international 2014, 837157
61. Heiland B, G. S. (1999) Rat Locomotion and Release of Acetylcholinesterase. Pharmacol Biochem Behav 62, 81-87
62. Revett, T. J., Baker, G. B., Jhamandas, J., and Kar, S. (2013) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. Journal of psychiatry & neuroscience : JPN 38, 6-23
63. Huang, H. C., and Klein, P. S. (2006) Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer's disease. Current drug targets 7, 1389-1397
64. Lee, E. K., Hwang, J. H., Shin, D. Y., Kim, D. I., and Yoo, Y. J. (2005) Production of recombinant amyloid-beta peptide 42 as an ubiquitin extension. Protein Expr Purif 40, 183-189
65. Wallace, B. A. (2000) Conformational changes by synchrotron radiation circular dichroism spectroscopy. Nature structural biology 7, 708-709
66. Krebs, M. R., Bromley, E. H., and Donald, A. M. (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149, 30-37
67. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) (1)H, (13)C and (15)N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. Journal of biomolecular NMR 5, 332
68. Neidig, K. P., Geyer, M., Gorler, A., Antz, C., Saffrich, R., Beneicke, W., and Kalbitzer, H. R. (1995) AURELIA, a program for computer-aided analysis of multidimensional NMR spectra. J Biomol NMR 6, 255-270
69. Wishart, D. S., and Sykes, B. D. (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4, 171-180
70. Wishart, D. S., and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol 239, 363-392
71. Wishart, D. S., and Nip, A. M. (1998) Protein chemical shift analysis: a practical guide. Biochem Cell Biol 76, 153-163
72. Wang, C. C., Huang, H. B., Tsay, H. J., Shiao, M. S., Wu, W. J., Cheng, Y. C., and Lin, T. H. (2012) Characterization of Abeta aggregation mechanism probed by congo red. J Biomol Struct Dyn 30, 160-169
73. Kallberg, Y., Gustafsson, M., Persson, B., Thyberg, J., and Johansson, J. (2001) Prediction of amyloid fibril-forming proteins. J Biol Chem 276, 12945-12950
74. Paivio, A., Nordling, E., Kallberg, Y., Thyberg, J., and Johansson, J. (2004) Stabilization of discordant helices in amyloid fibril-forming proteins. Protein Sci 13, 1251-1259


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top