跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳黃清雲
研究生(外文):Ngo Huynh Thanh Van
論文名稱:椰纖作為番茄無土栽培介質可行性之評估
論文名稱(外文):Studies on the Feasibility of Coconut Fiber as Growing Substrate for Soilless Culture Tomato
指導教授:李文汕李文汕引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:87
中文關鍵詞:番茄椰纖泥炭土
外文關鍵詞:tomatococonut fiberpeat moss
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
  農友301番茄(Solanum lycopersicum L. cv. “Known You” 301)以不同比例介質栽培於台灣國立中興大學玻璃溫室,介質混合如下:C100(100%椰纖土)、CP75(75%椰纖土+25%泥炭土)、CP50(50%椰纖土+50%泥炭土)、CP25(25%椰纖土+75%泥炭土)及P100(100%泥炭土)。試驗採完全逢機設計(CRD),每處理24株,三重複,每日進行養液澆灌,養液pH5.8~6.0,EC值2.5~3.0 (dS/m)。
  生育前期先進行土壤分析,包括總體密度、總孔隙度、保水力、充氣孔隙度、粒徑分析。土壤分析結果,介質總體密度介於0.11~0.17 g/cm3、總孔隙度為91.83~95.43%、保水力31.23~52.71%、充氣孔隙度42.72~60.61%。粗粒徑的介質佔7.76~22.88%,C100的介質則含有較多0.5~2.0mm的顆粒,占19.41%,為所有處理中最高。定植80天後介質pH介於4.6~6.1、EC 2.8~3.6 (dS/m)。
  試驗期間,自定植天數(DAT)第0天開始,每10天每處理隨機取3處介質進行介質養分、pH及EC之分析,至第80天止。測得pH 4.6~6.1,EC 2.8~3.6 (dS/m)。P100的氮含量介於1.05~1.22%、磷含量0.02~0.04%;C100的鉀含量介於1.23~1.28%、鎂含量0.13~0.17%;CP25鈣含量為2.39~2.69%。
  定植天數30、60、85天時進行葉片與莖的營養分析。P100於定植後30天之莖部氮含量為3.0%,較其他處理為高。定植後85天之營養分析顯示,C100及P100之葉片磷含量為0.5%、C100莖部之鉀含量高於葉片,達4.63%,顯示鉀在莖部累積較葉片多;P100葉片鈣含量介於4.05~4.65%之間,各處理間莖部鈣含量則無顯著差異;C100之葉片鎂含量為0.74%,微量元素鐵、銅、鋅、錳含量高於其他處理。
  番茄果實分析項目包括可溶性固形物(°Brix)、果實硬度、維他命C含量(%)、果皮厚度、果實大小。CP75之果實品質最佳,可溶性固形物含量達5.58°Brix、維他命C含量22.5 mg/100g鮮重、硬度1.98 kg/cm2。植株高度以CP25及P100較高,分別為168.92及167.50 cm;CP75葉數最多,可達24.67片,平均果重84.25g。CP75、CP25、P100之果實平均產量分別為每平分公尺41.88、47.30、56.71 kg。


Abstract

Tomato (Solanum lycopersicum L.), hybrid cv. Known You 301 (Known You seed company), were grown in greenhouse at the National Chung Hsing University, Taichung, Taiwan in different substrates as follows: C100 (100% coconut fiber); CP75 (75%coconut fiber + 25% peat moss); CP50 (50% coconut fiber + 50% peat moss); CP25 (25% coconut fiber + 25% peat moss) and of P100 (100% peat moss). The experiment consisted of a completely randomized design (CRD) with 3 replicates, in which each replicate consisted of 24 plants. The tomato plants were supplied by nutrient solution everyday with pH value 5.8 to 6.0 and EC value 2.5 to 3.0.
The media from different ratio of substrates were collected every ten days and measured pH, EC. Bulk density, total porosity, container capacity, air- fill porosity and particle density were investigated at previous growing stage. Bulk density was ranged from 0.11 to 0.17 g/cm3. Total porosity was between 91.83 and 95.43%. The container capacity was ranged from 31.23 to 52.71% and air- fill porosity was ranged from 42.72 to 60.61%. The particle size was distributed between 7.76 and 22.88 % in coarse content and C100 medium substrate was highest in value of 19.41% with particle size ranged from 0.5 to 2.0 mm. The pH value at 80 days after transplanting was ranged from 4.6 to 6.1 and EC value was between 2.8 and 3.6.
The nutrient content of medium was estimated from 0 to 80 days after transplanting. Nitrogen and phosphorus content of P100 medium were 1.05 - 1.22% and 0.02 - 0.04%, respectively. Potassium content of C100 medium was ranged from 1.23 to 1.28% of and from 0.13 to 0.17% of magnesium content. CP25 medium substrate had calcium content 2.39 to 2.69%.
The nutrient content in leaves and stem were determined at 30, 60 and 85 days after transplanting. The nitrogen content in stem of P100 medium substrate at 30 DAT was highest with value of 3.0%. For C100 and P100 substrate, the phosphorus content in leaves at 85 days was 0.5%. The potassium content in stem of C100 substrate at 85 DAT was 4.63%. It was indicated that the potassium content was high accumulation in stem compared with in leaves. There were no significant differences in calcium content in stem between the plants grown in different substrates. However, calcium content in leaves of P100 substrate was ranged from 4.05 to 4.65%. The magnesium content in leaves at 85 days was 0.74% observed in C100 substrate. The micro elements of nutrient such iron, copper, zinc and manganese were increased C100 substrate during 85 days.
Tomato fruits were used for measurement the content of soluble solid (oBrix), fruit firmness, vitamin C (%), pericarp thickness and fruits size. The highest of plant height was obtained from CP25 substrate (168.92 cm) and P100 substrate (167.50 cm), respectively. The highest of leaf number was shown in CP75 substrate with 24.67 leaves. The mean of fruit weight in CP75 substrate was 84.25g per fruit. The mean of fruit yield per meter square in CP75, CP25 and P100 substrate were 41.88 kg; 47.30 kg and 56.71 kg, respectively. In the same way, the highest quality as soluble solid (5.58 0Brix), vitamin C (22.50 mg per 100g) and fruit firmness (1.98 kg/ cm2) was obtained from CP75 substrate.


CONTENTS
Chinese abstract i
English abstract ii
Contents iv
List of tables vi
List of figures vii
Chapter 1: INTRODUCTION 1
Chapter 2: REVIEW OF THE LITURATUES 3
2.1. Tomato 3
2.2. Use of soilless media for tomato plant growth 6
2.3. Physical and chemical properties of medium 8
2.4. Fruits diseases 14
Chapter 3: MATERIALS AND METHODS 16
3.1. Materials 16
3.2. Physical and Chemical properties of medium 16
3.3. Growth and development of tomatoes 20
3.4. Statistical analysis 28
Chapter 4: RESULTS 29
4.1. Effect of medium with different ratio of substrates on physical and chemical properties 29
4.2. Effect of medium with different ratio of substrates on nutrient content 37
4.3. Effect of medium with different ratio of substrates on development and growth of tomato 42
4.4. Fruit quality and yield 64
Chapter 5: DISCUSSION 72
5.1. Physical and chemical properties for medium of different ratio of substrates 72
5.2. Nutrient for medium of different ratio of substrates 73
5.3. Nutrient of tomato plant 74
5.4. Fruit quality and yield of tomato plant 75
CONCLUSION 77
References 78


LIST OF TABLES
Table 1. Nutrient contents in tomato leaves and their functions 5
Table 2. Chemical composition of nutrient solution 21
Table 3. Nutrient solution apply for tomato plant growth stage 22
Table 4. Particle size distribution of five different medium substrates 33
Table 5. Acidity value (pH) of five different medium substrates at 0 to 80 days after transplanting 35
Table 6. Electrical Conductivity value (EC) of five different medium substrates at 0 to 80 days after transplanting 36
Table 7. Plant height y of tomato “KY 301” grown in five different medium substrates 48
Table 8. Leaf number of tomato “KY 301” grown in five different medium substrates 49
Table 9. Leaf photosynthesis rates of tomato “KY 301” as affected by five different media after transplanting for 30 and 60 days 50
Table 10. Chlorophyll content of tomato “KY 301” as affected by five different media substrate after transplanting for 30 and 60 days 51
Table 11. Flower number per cluster and fruit set percentage of tomato “KY 301”as affected by five different medium substrates 52
Table 12. Fresh and dry weight of leaves and stem of tomato “KY 301” grown in five different medium substrates 54
Table 13. Soluble solids (0Brix), vitamin C, firmness and pericarp thickness of tomato “KY 301” grown in five different medium substrates 66
Table 14. Fruit size, diameter index of tomato “KY 301” grown in five different medium substrates 68
Table 15. Fruit yield of tomato “KY 301” grown in five different medium substrates 69

LIST OF FIGURES
Fig.1. the testing of container capacity method 18
Fig.2. Classification particle medium instrument 18
Fig.3. Testing Mac and micro-nutrient instrument (a); Testing Nitrogen content instrument (b); Test phosphorus content instrument (c) 26
Fig.4. Soluble solid content instrument (a); Fruit firmness measuring meter (b); Vitamin C content instrument (c) 27
Fig.5. Bulk density of five different medium substrates 31
Fig.6. Total porosity of five different medium substrates 31
Fig.7. Container capacity of five different medium substrates 32
Fig.8. Air- filled porosity of five different medium substrates 32
Fig.9. Macronutrient content as Nitrogen (a), Phosphorus (b) and Potassium (c) as affected by five different medium substrates 39
Fig.10. Macronutrient content as Calcium (a) and Magnesium (b) as affected by five different medium substrates 40
Fig.11. Micronutrient content as Iron (a), Copper (b), Zinc (c) and Manganese (d) as affected by five different medium substrates 41
Fig.12. Days to anthesis of tomato “KY 301” grown in five different medium substrates 51
Fig.13. Leaf area index of tomato “KY 301” grown in five different medium substrates 53
Fig.14. Nitrogen content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 55
Fig.15. Phosphorus content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 56
Fig.16. Potassium content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 57
Fig.17. Calcium content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 58
Fig.18. Magnesium content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 59
Fig.19. Iron content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 60
Fig.20. Copper content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 61
Fig.21. Zinc content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 62
Fig.22. Manganese content in leaves (a) and stem (b) of tomato “KY 301” grown in five different medium substrates 63
Fig.23. Fresh fruit weight (a), dry fruit weight (b) and water content percent (c) of tomato “KY 301” grown in five different medium substrates 67
Fig.24. Fruit size of tomato “KY 301” grown in five different medium substrates 70
Fig.25. Fruit set of tomato “KY 301” grown in five different medium substrates 71

REFERENCES

Abad, M., M.D. Martinez- Herrero, P.F. Martinez Gaircia, and J. Martinez Corts. 1992. Evaluacion agronomica de los sustratos de cultivo (Agricultural evaluation of crop media). I. Jornadas de sustratos. Actas de Horticultura. 11:141-154. SECH.
Abad, M., V. Noguera, M.D. Martinez- Herrero, F. Fornes, and J. Martinez- Corts. 1989. Physical properties of sedge peat- based media and their relation to plant growth. Acta Hort.238:45-56.
Abad, M., F. Fornes, C. Carrion, and V. Noguera. 2005. Physical properties of various coconut coir dusts compared to peat. Hort. Sci. 40(7): 2138-2144.
Adb- Alla, A.M., S.M. Adam, A.F. Abou- Hadid, and S.S.B Iman. 1996. Temperature and fertilizer effects on tomato productivity. Acta Hort. 434: 113-119.
Abdallah, M.M., A.A.G. Abdallah, L. El-Oksh, and M.F. El-Sherif. 2000. Production of tomato and cucumber transplants in greenhouse using local Bagasse and hyacinth composts as a substitution for peat moss. J. Agric. Sci. Mansoura Uni., 25: 5851-5866.
Abdel- Samad, S., E.A.M. Ismail, A.S. El- Beltagy, and A.F. Abou- Hadid. 1996a. Tomato growth in calcareous soils in relation to forms and levels of some macro- and micronutrients. Acta Hort. 434: 85-94.
Andriolo, J.L., T.S. Duarte, L. Ludke, and E.C. Skrebsky. 1999. Caracterizacão e avaliacão de substratos para o cultivo do mate for a do solo. Hort. Brasileira 3: 215-219.
Arenas, M., C.S. Vavrina, J.A. Cornell, E.A. Hanlon, and G.J. Hochmuth. 2002. Coir as an alternative to peat in media for tomato transplant production. Hort. Sci. 37(2): 309-312.
Argo, W.R. and J.A. Biernbaum. 1997. The effect of root media on root-zone pH, calcium, and magnesium management in containers with impatiens. J. Amer. Soc. Hort. Sci. 122: 275-284.
Awang, Y., A.S. Shaharom, R.B. Mohamad, and A. Selamat. 2009. Chemical and physical characteristics of cocopeat- based media mixtures and their effects on the growth and development of Celosia cristata. American J. Agric. Biol. Sci. 4:63-71.
Asiah, A., I.M. Razi, Y.M. Khanif, M. Marziah and M. Shaharuddin. 2004. Physical and Chemical properties of coconut coir dust and oil palm empty fruit bunch and the growth of hybrid heat tolerant cauliflower plant. Pertanika J. Trop. Agric. Sci. 27: 121-133.
Bai, Y. and P. Lindhout. 2007. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann. Bot. 100: 1085-1094.
Barber, K.E. 1993. Peatlands as scientific archives of past biodiversity. Biodiversity Conservation 2: 474-489.
Barber, S.A. 1984. Soil nutrient bioavailability, p.398. New York: John Wiley & Sons.
Barkham, J.P. 1993. For peat’s sake: Conservation or exploitation. Biodiversity Conservation 2: 556-566.
Ben- Oliel, G. S. Kant, M. Naim, H.D. Rabinowitch, G.R. Takeoka, R.G. Buttery, and U. Kafkali. 2004. Effects of ammonium to nitrate ratio and salinity on yield and fruit quality of large and small tomato fruit hybrids. J. Plant nutrition 27: 1795-1812.
Besford, R. T and Maw G.A. 1975. Effect of potassium nutrition on tomato plant growth and fruit development. Plants Soil 42: 395-412.
Besford, R. T. 1975. Effect of potassium nutrition on leaf protein concentration and growth of young tomato plants. Plant Soil 42: 441-451.
Blok, C., C.de Kreij, R.Baas, and G. Wever. 2008. Analytical methods used in soilless cultivation, p. 250. In: Raviv, M. and J.H. Lieth. Soilless culture: Theory and practice. Elsevier, Linacre House, Jordan Hill, Oxford OX2 8DP, UK.
Bose, P., D. Sanyal, and K. Majumdar. 2006. Balancing potassium, sulfur, and magnesium for tomato and chili grown on red lateritic soil. Better Crops. 90(3): 22-24.
Bremner, J.M., 1965. Inorganic forms of nitrogen. In: Methods of soil Analysis. Part-2: Chemical and misrobial properties. Black et al. eds. American Society of Agron; Monograph No. 9, Madison Winconsin. USA.
Buckland, P. 1993. Peatland archaeology: A conservation resource on the edge of extinction. Biodiversity Conservation 2: 513-527.
Bugbee, G.J. and Frink, C.R. 1983. Quality of potting soils. Bulletin 812. New Have, CT: The connecticut Agr. Exp. Station.
Bunt, A.C. 1984. Physical properties of mixtures of peat and minerals of different particle size and bulk density for potting substrates. Acta Hort.150: 143-153.
Cattivello, C. 1991. Physical parameters in commercial substrates and their relationships. Acta Hort. 294:183-195.
Carlile, W.R. 1997. The requirements of growing media. In Peat in Horticulture- its use and sustainability. Proc. International peat conference, cd. G. Schmilcwski, p.1723. Amsterdam.
Costa, J.M. and E. Heuvelink. 2005. Introdcution: The Tomato crop and industry. In: Tomatoes, p.2. In: Heuvelink, E. Tomatoes. CABI publishing, Wageningen University, The Netherlands.
De Boodt, M. and O. Verdonck. 1972. The physical properties of the substrates in horticulture. Acta Hort. 26: 37-44.
Del Amor, F.M. and L.F.M. Marcelis. 2006. Differential effect of transpiration and Ca supply on growth and Ca concentration of tomato plants. Sci. Hort. 111: 17-23.
Djedidi, M., D. Gerasopoulos, and E. Maloupa. 1996. The effect of different substrates on the quality of F. Carmello tomatoes (Lycopersicon escullentum Mill) grown under protection in a hydroponic system. Cahiers Options Méditerranéennes. 31: 379-383.
Dobricevic, N., S. Voca, J. Borosic, and B. Novak. 2008. Effects of substrate on tomato quality. Acta Hort.779: 485-489.
Domeno, I., N. Irigogen, and J. Muro. 2009. Evolution of organic matter and drainages in wood fibre and coconut fibre substrates. Sci.Hort. 122: 269-274.
Evans, M.R., S. Konduru, and R.H. Satpms.1996. Source variation in physical and chemical properties of coconut coir dust. HortScience. 3: 965-967.
Evans, M.R. and R.H. Stapms.1996. Growth of bedding plants in sphagnum peat and coir dust- based substrates. J. Environ. Hort.14: 187-190.
Evans, M.R. and S. Konduru. 1996. Source variation in physical and chemical properties of coconut coir dust. HortScience. 31: 965-967.
Fandi, M., J.A. Al- Muhtaseb and M.A. Hussein. 2008. Yield and fruit quality of tomato as affected by the substrate in an open soilless culture. Jordan J. Agric. Sci. 4(1): 65-72.
Fonteno, W.C. 1989. An approach to modeling air and water status of horticultural substrates. Acta Hort. 238:67-74.
Fontes, P.C.R., R.A. Sampalo, and E.C. Mantovani. 2000. Tomato yield and potassium concentrations in soil and in plant petioles as affected by potassium fertirrigation. Pesq. Agropec. Bras. 35(3): 575-580.
Gunther, J. 1983. Analytics of substrates and problems by transmitting the results into horticultural practice. Acta. Hort.150: 33- 40.
Halmann, E. and J. Kobryn. 2003. Yield and quality of cherry tomato (Lycopersicon esculentum var. Cerasiforme) cultivar on rockwool and cocofibre. Acta Hort. 614: 693-697.
Handreck, K.A.1992. Rapid assessment of the rate of nitrogen immobilization in organic components of potting media: 1 Method development. Communications in Soil Science and Plant Analysis. 23: 201-215.
Handreck, K.A.1993a. Properties of coir dust, and its use in the formulation of soilless potting media. Commun. Soil Sci. Plant Anal. 24: 349-363.
Handreck, K.A. 1993b. Immobilisation of nitrogen in potting media. Acta Hort. 342: 121-126.
Handreck, K., and N. Black. 2002. Growing Media for Ornamental Plants and Turf. 3rd Ed. Sydney: University of New South Wales Press Ltd.
Hartman, P.L., H.A. Mills, and J.B. Jones, Jr. 1986. The influence of nitrate/ ammonium ratios on growth, fruit development, and element concentration in ‘Floradel’ tomato plants. J. Am. Soc. Hort. Sci.111: 487-490.
Harvey, M., S. Quilley, and H. Beynon. 2002. Exploring the Tomato. Transformations of Nature, Society and Economy. Edgar publishing, Cheltenham, UK, pp. 304.
Hellal, R.M., A.M. Shaheen, N.M. Omar, and A.R. Mahmoud. 1996. Comparative studies on seedling production of some vegetable crop with various agriculture media. Egyptian J. Hort. 2: 129-144.
Huett, D.O. and E.B. Dettmann. 1988. Effect of nitrogen on growth, fruit quality and nutrient uptake of tomatoes grown in sand. Australian Journal of Experimental Agriculture, East Melbourne. 28: 391-399.
Jaynes, D.B., T.S. Colvin, D.L. Karlen, C.A. Cambardella, and D.W. Meek, 2001. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. J. Environ. Qual., 30: 1305–1314.
Jensen, M.N. and A.J. Malter. 1995. Protected Agriculture: A Global Review. World Bank Technical, p. 253. World Bank, Washington, D.C.
Khavari- Nejad, R.A., F. Najafi, and C. Tofighi. 2009. Diverse response of tomato to N and P deficiency. Int. J. Agri. Biol. 11: 209-213.
Kithome, M., J.W. Paul, and A.A. Bomke. 1999a. Reducing nitrogen losses during simulated composting of poultry manure using adsorbents or chemical amendments. J. Environ. Qual. 28: 194-201.
Kithome, M., J.W. Paul, and T. Kannangara. 1999b. Adsorption isotherms of ammonium on coir. Commun. Soil Sci. Plant Anal. 30: 83-95.
Konduru, S., M.R. Evans, and R.H. Stamps. 1999. Coconut husk and processing effects on chemical and physical properties of coconut coir dust. Hort. Sci. 3: 88-90.
Krauss S., W.H. Schnitzler, J. Grassmann, and M. Woitke. 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 54: 441-448.
Krumm M., V. Moazami, and P. Martin. 1990. Influence of potassium nutrition on concentrations of water soluble carbohydrates, potassium, calcium, and magnesium and the osmotic potential in sap extracted from wheat (Triticum aestivum) ears during preanthesis development. Plant Soil 124: 281-285.
Lee, S.K. and A.A. Kader. 2000. Preharvest and psotharvest factors influencing vitamin C content of horticultural crops. Post. Biol. Technol. 20P: 207-220.
López, R., f. Cabrera, E. Madejon, F. sancho, and J.M.Álvarez. 2008. Urban composts as an alternative for peat in forestry nursery growing media. Dynamic Soil, Dynamic Plant 2 (Special Issue 1): 60-66.
McCollum, T.G., P.J. Stoffella, C.A. Powell, D.J. Cantliffe, and Hanif-Khan S. 2004. Effects of silverleaf whitefly feeding on tomato fruit ripening. Post. Biol. Technol. 31: 183-190.
Meerow, A.W.1994. Growth of two subtropical ornamental using coir (coconut mesocap pith) as a peat substitute. HortScience 29: 1484-1486.
Meerow, A.W.1995. Growth of two tropical foliage plants using coir dust as a container medium amendment. HortTechnology 5: 237-239.
Mills, H.A. and Jr.J.B. Jones. 1996. Plant analysis handbooks II- a practical sampling, preparation, analysis, and interpretation guide, pp. 8-53.
Morard, P. 1976. Effect of potassium deficiency on the cationic content of sorghum. 4th International Colloquium on the Control of Plant Nutrition. AIONP Proc. 1:449-459.
Murphy, L.S., R. Jr. Ellis and D.C. Adriano. 1980. Phosphorus application interaction effects on crop production. J. Plant Nutri. 3: 593-613.
Nadia, N.B., O.H. El-Hussieny, and E.H. Allam. 2007. Efficiency of some natural substitutes of peatmoss as growing media for tomato seedlings production. Austral. J. Basic Appl. Sci. 1: 193-207.
Needham, P.1973. Nutritional disorders. In: The U.K. Tomato manual. Grower Books, London.
Nonnecke, I.N., 1989. Vegetable production. Van Nostrand Reinhold, New York.
Offord, C.A., S. Muir, and J.L. Tyler. 1998. Growth of selected Australian plants in soilless media using coir as a substitute for peat. Austral. J. Expt. Agric. 38: 879-887.
Ozores-Hampton, M., T.A. Obreza, and G. Hochmuth. 1998. Using compost wastes on Folrida vegetable crops. Hort. Technol. 8: 130-137.
Peyvast, G., J.A. Olfati, P. Ramezani- Kharazi, and S. Kamari- Shahmalehi. 2009. Uptake of calcium nitrate and potassium phosphate from foliar fertilization by tomato. J. Hort. Forest 1: 007-013.
Pujos, A. and P. Morard. 1997. Effect of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant and Soil 189: 189-196.
Ramos, S.J., D.O. Guiherme, C.F.C. Junior, R.A. Sampaio, C.A. Costa, and L.A. Fernandes. 2008. Tomato seedling production in substrate containing coconut fiber and mushroom culture waste. Rev. Bras. Ciênc. Agrar. Recife. 3(3): 237-241.
Roberts, R.M., C.F. William, and R.A. Larson. 1989. Hydrology of horticultural substrates: I. Mathematical models for moisture characteristics of horticultural container Media. J Am. Soc. Hort. Sci. 114(1): 48-52.
Sambo, P., F. Sannazzaro, and M.R. Evans. 2008. Physical properties of ground fresh rice hulls and sphagnum peat used for greenhouse root substrates. HortTechnol. 18: 384-388.
Savithri, P. and H.H. Khan. 1993. Characteristics of coconut coir peat and its utilization in agriculture. J. Plant Crop. 22: 1-18.
Scagel, C.F. 2003. Growth and nutrient use of ericaceous plants grown in media admended with sphagnum moss peat or coir dust. Hort. Sci. 38(1): 46-54.
Siemonsma, J.S and K. Piluek. 1993. Prosea: Plant Resources of South- East Asia, No.8: Vegetables. Pudoc Scientific Publishers, Wageningen, The Nertherlands, pp. 1199-1205.
Sims, W.L., 1980. History of tomato production for industry around the world. Acta Hort. 100: 25.
Smolen, S. and W. Sady. 2008. Effect of various nitrogen fertilization and foliar nutrition regimes on carrot (Daucus carota L.) yield. J. Hort. Sci. Biotechnol. 83: 427–435.
Stamps, R.H. and M.R. Evans.1997. Growth of Dieffenbachia maculata ‘Camille’ in growing media containing sphagnum peat or coconut coir dust. HortScience 32: 844-847.
Su, N.R. 1974. Experiments involving the use of sulfur- coated fertilizer for corn and tomatoes. Agronomic Cooperators Workshop, 6-8 Nov. 1974. Muscles Shoals, AL.
Suhardiyanto, H., C. Arif, and B.I. Setiawan. 2009. Optimization of EC values of nutrient solution for tomato fruits quality in hydroponics system using artificial neutral network and genetic algorithms. ITB J. Sci. 41(1): 38-49.
Taylor, M.D. and S.J. Lacascio. 2004. Blossom-end-rot: a calcium deficiency, J. plant Nutr. 27: 123-139.
Trudel M.J. and J.L. Ozbun. 1971. Influence of potassium on carotenoid content of tomato fruit. J. Am. Soc. Hortic. Sci. 96: 763-765.
Urrestarazu, M., C. Guillén., P.C. Mazuela and G. Carrasco. 2008. Wetting agent effect on physical properties of new and reused rockwool and coconut coir waste. Sci. Hort. 116: 104-108.
Vavrina C.S., K. Armbrester, M. Arenas, and M. Pena. 1996. Coconut coir as an alternative to peat media for vegetable transplant production. Swfrec Station Report- Veg. 96. 7: 1-11.
Varis, S. and R.A.T. George. 1985. The influence of mineral nutrition on fruit yield, seed yield, and quality in tomato. J. Hort. Sci. 60: 373-376.
Voogt, W. and C. Sonneveld. 1997. Nutrient management in closed growing systems for greenhouse production. In: Goto, E. (Ed.), Plant production in closed ecosystem. Academic publishers, Dordrecht, pp. 83-102.
Von Uexkull, H.R. 1979. Tomato nutrition and fertilizer requirement in the tropics. First International Sympodium on Tropical Tomato, p. 65-78.
Wallach, R. 2008. Physical characteristics of soilless media, p.44 and p.76. In: Soilless culture: theory and practice. Raviv, M. and J.H. Lieth.. Elsevier’s publishing, San Diego, CA.
Waller, P.L. and F.N. Wilson. 1983. Evaluation of growing media for consumer use. Acta Hort.150: 51-58.
Wiersum, L.K. 1966. Calcium content of fruits and storage tissues in relation to mode of water supply. Acta Bot. Neerl. 15: 406-418.
Wllcox, G.E., J.E. Hoff, and C.M. Jones. 1973. Ammonium reduction of calcium and magnesium content of tomato and seed corn leaf tissue and influence of blossom- end-rot of tomato fruit. J. Am. Soc. Hort. Sci. 98(1): 86-89.
Winsor, G.W. 1973. Nutrition. In: Tomato Manual. the U.K.. Grower Books, London.
White, J.W and J.W. Mastalerz. 1966. Soil moisture as related to container capacity. Proc. Amer. Hort. Sci. 89: 758-765.
Yamakawa, T. 1992. Laboratory Methods for Soil Science and Plant Nutrition. Part 2. Methods of Plant Analysis. JICA-IPSA Proj. p. 6-14.
Yahya, A. and I. M. Razi. 1996. The growth and flowering of some annual ornamentals on coconut dust. Acta Hort. 450: 31-38.
Yeager, T., C. Gilliam, T. Bilderback, D. Fare, A. Niemiera, and K. Tilt. 1997. Best management practices guide for producing container-grown plants. Southern Nurserymem’s Association, Marietta, Georgia.
Zimet D. and C.S. Vavrina. 1995. Florida vegetable seedlings: concept, budgets, and cashflow. Bulletin 304. Fla. Coop. Ext. Serv.
Zhao, D., K.R. Reddy, V.G. Kakani, and V.R. Reddy. 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European J. Agron. 22: 391-403.
Zobel, M.B. 1966. Mechanization of tomato production. Proc. National conference on tomatoes. Department of Horticulture, Perdue University, National Canners Association, Lafayette, IN, December, 1966.
Batra, S.K. 1985. Other long vegetable fibers. Handbook of Fiber Science and Technology #4. <http:www.hortnet.co.nz/publications/hortfacts/hf355023.htm>.
Evans, L. 2009. Eco- friendly alternatives to peat moss. <http://www.brighthub.com/environment/green-living/articles/44037.aspx>.
FAO. 2002. <http://www.fao.org>.
FAO. 2003. <http://www.fao.org>.
Food of engineering company (Fenco). 2004. About the tomatoes processing industry. <http://www.tomatonews.com/processing.php>.
Kayne, R. 2010.< http://www.wisegeek.com/what-is-ph.htm>.
PTS laboratories. 2002.< http://www.ptslabs.com/documents/Poros2.pdf>.
Hydro, S. 2008. Growing medium. < http://www.simplyhydro.com/growing1.htm>.
Institute of Vegetables and Fruits. 2000. The world vegetable marketplace. Hanoi. Simply hydroponics and organics. 2008. Growing medium.< http://www.simplyhydro.com/growing1.htm#Coconut%20Fiber>.
Kayne, R. 2010.<http://www.wisegeek.com/what-is-ph.htm>.
Robins. J.A. and M.R. Evans. 2010. Growing media for container production in a greenhouse or nursery. Cooperative extension service of University of Arkansas division of agriculture. < http://www.uaex.edu/Other_Areas/publication/PDF/FSA-6098.pdf>.
Sainju, U.M., R. Dris, and B. Singh. 2003. Mineral nutrition of tomato. <http://www.net-lanna.info/Food/Articles/11019991.pdf>.
Spier, M. 1997. Soilless media in horticulture. The Horticulture and Food Research Institute of New Zealand Ltd. <http:www.hortnet.co.nz/publications/hortfacts/hf355023.htm>
Tramp.C., J. Chard, and B. Bugbee. 2009. Optimization of soilless media for alkaline irrigation water. UtahState University. <http:www.usu.edu/cpl/PDF/Optimization of soilless media high pH water sources.pdf>.
Wikipedia. 2010. < http://en.wikipedia.org/wiki/Tomato>.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 田仁(民88),「焊接作業的危害及對策」,工業安全衛生月刊,第115期,40-44頁。
2. 洪根強(2006),「論「全國職場勞動安全週」之推動緣起及目的」,工業安全衛生月刊,第203期,16-21頁。
3. 陳昆仁(2002) ,「國中技藝教育班學生學習環境滿意度之調查研究」,教育資料與研究,第44期,89-101頁。
4. 陳俊復(2009),「高雄市勞工接受安全衛生教育訓練的經驗與現況初探」,工業安全衛生月刊,第236期,8-23頁。
5. 張家宜(2000),「大學學生滿意度之實證研究」,淡江人文社會學刊,第6期, 1-27頁。
6. 趙育玄(1996),「工業安全衛生的基礎-學校實習工場安全衛生教育」,工業安全衛生月刊,第81期,18-26頁。
7. 簡紅珠(1997),「在新世紀的學校教育脈絡中建構良性互動與有效學習的班級環境」,國教世紀,第178期,13-16頁。
8. 周清源。1996。傳統麵食原料的選擇與用途(二)。烘焙工業65:60-3。
9. 黃書政。2007。膳食纖維的功能性及食品工業應用。食品工業。1:2。
10. 陳俊榮。1998。膳食纖維與健康。食品資訊 150:36-8。
11. 張湘文。2007。蔬果中之膳食纖維及其機能特性。食品工業。15:17。
12. 楊鵑華。1995。製麵包用油脂之特色。烘焙工業59:46。
13. 賴喜美。1995。烘焙原料的認識(1)-小麥與麵粉(上)。烘焙工業64:49-50。
14. 顏文俊。2005。糖果材料學-油脂。烘焙工業124:44-8。