跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林文翰
研究生(外文):Wen-Han Lin
論文名稱:分階式雙漸開線形與圓弧形螺旋齒輪對之接觸分析
論文名稱(外文):Tooth Contact Analysis of Helical Gear Pair with Double Involute and Double Circular Arc Ladder-shaped Teeth
指導教授:蔡忠杓蔡忠杓引用關係
指導教授(外文):Chung-Biau Tsay
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:95
中文關鍵詞:分階式雙漸開線雙圓弧螺旋齒輪電腦數值分析非線性創成
外文關鍵詞:ladder-shapeddouble involutedouble circular archelical gearpredesigned functioncomputerized simulation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
現今齒輪發展的新趨勢,是以設計點接觸之嚙合方式為主而非線接觸之嚙合方式,以減少齒輪嚙合時對於裝配誤差的敏感性。利用兩不相匹配之曲面作為大、小齒輪之齒面,則可使其嚙合方式以點接觸形式取代線接觸以避免齒緣接觸。故本論文所研究之齒輪對,即使用兩把不同齒面幾何形狀的假想齒條刀來創成大、小齒輪,而不同於一般以同一把齒條刀創成的漸開線螺旋齒輪對。
由於被創成之齒輪外形具有階梯狀,所以其齒根處之齒厚較一般之漸開線齒輪為大,因此可以提高輪齒的彎曲強度,且這樣的設計可以使齒輪對的齒面獲得兩個嚙合接觸區域,而不是傳統漸開線螺旋齒輪對的一個接觸區域,可藉此分散齒面之接觸應力。
因為裝配誤差而引起的傳動誤差,是齒輪對在嚙合過程中引起噪音與振動的主要原因,為了減少噪音與振動的現象,本研究所採用之方法是在齒形上預先設計了二次式的傳動誤差函數,藉以吸收齒輪對因裝配誤差所引起的不連續傳動誤差。
另外,本研究也利用電腦數值分析來模擬齒輪對的傳動與接觸的過程,藉此證明前述之齒形修整設計方法,可製造出在裝配誤差之下能具有二次傳動誤差曲線特性之齒輪對。在製造大齒輪方面,被創成齒輪與刀具之間的非線性新創成關係,可利用電腦數值控制(CNC)機器來製造。對於小齒輪的製造方面,則仍屬於傳統的線性創成關係,所以利用傳統的製造機器即可製造完成。
由於齒輪在負載之下傳動與齒面彈性變形的關係,因此,接觸點將延伸成為一橢圓形之接觸區域,在本研究中,將利用齒輪齒面外形法及曲率分析法,針對接觸齒印之長、短軸與方向作深入的研究。其中曲率分析法必須先自齒條刀著手,根據齒輪的創成過程而推導,求得大、小齒輪接觸齒面上之主軸方向向量與主軸曲率,進而求得接觸橢圓。

The new trend of the gear design is to provide the gear teeth with surfaces being in contact at every instant at a point but not at a line to reduce the gear sensitivity to gear axial misalignments. By applying the mismatch of pinion-gear tooth surfaces, the tooth contact becomes a point contact instead of a line contact. The bearing contact is located at the middle region of the gear tooth surfaces and thus edge contact can be avoided. Unlike the generation of conventional involute helical gears, two imaginary rack cutters, instead of one, are applied for the generation of the proposed helical gear pair in this thesis.
Since the profile of the proposed gear is in a ladder-shaped, the tooth thickness of the dedendum is larger than that of the conventional involute helical gears. This enables the gear set to obtain a two-zone of meshing instead of only one-zone of meshing existing in the conventional involute helical gears, and thus the gear has higher gear strength as well.
The transmission error caused by gear axial misalignments is the main source of gear noise and vibration. Reduction of gear noise and vibration can be achieved by applying a predesigned function of transmission errors of a parabolic type. Such a predesigned parabolic function can absorb a discrete linear function of transmission errors caused by gear axial misalignments.
Computerized simulations on gear meshing and contact of the designed gears demonstrate that the proposed design method for gear modifications produce a pair of gears with a parabolic transmission error function when axial misalignments are present. For the manufacture of the gear, the new relation between the rotational motions of the gear and cutting tool is nonlinear. This can be accomplished by the application of a computer numerical controlled (CNC) machine. For the pinion, a conventional manufacturing machine can be used for manufacturing since the relation between the rotational motion of the pinion and the cutting tool is linear.
The contact of gear surfaces is spread over an elliptical area under the load due to the elasticity of the gear tooth surfaces. In this study, the dimensions and orientation of the instantaneous contact ellipse will be determined by applying the method of surface topology and method of gear curvature analysis. The latter one requires the determination of principal curvatures and directions of the contacting pinion-gear tooth surfaces, which can be obtain from the generation process of gears by rack cutters.

第一章 緒論1
1.1 前言1
1.2 研究內容4
第二章 齒刀設計與齒輪齒面數學模式6
2.1 前言6
2.2 齒條刀之設計8
2.2.1 齒條刀面 之數學模式8
2.2.2 齒條刀面 與小齒輪齒面 之共同法向量14
2.2.3 齒條刀面 之數學模式14
2.3齒輪嚙合方程式與齒面數學模式17
第三章 傳動誤差32
3.1 前言32
3.2 傳動誤差分析33
3.3 傳動誤差模擬之結果38
3.3.1理想裝配之傳動狀態模擬39
3.3.2具有裝配誤差狀態下之傳動誤差44
第四章 齒面接觸齒印分析62
4.1 前言62
4.2 齒面外形法之接觸齒印分析63
4.2.1 以齒面外形法計算接觸橢圓67
4.3 齒面曲率分析法之接觸齒印分析77
4.3.1 齒條刀面 之主軸方向與曲率79
4.3.2 齒條刀面 之主軸方向與曲率79
4.3.3 小齒輪齒面 之主軸方向與曲率80
4.3.4 大齒輪齒面 之主軸方向與曲率83
4.3.5 嚙合之接觸齒印85
4.3.6 齒面曲率分析法模擬之結果88
第五章 結論與未來展望91
5.1 結論91
5.2 未來展望93
參考文獻94

[1]Wildhaber, E., US Patent No. 1,601,750 issued Oct. 5, 1926
[2]Wildhaber, E.,“Gears with Circular Tooth Profile Similar to the Novikov System,”VDI Berichte, No. 47, 1961.
[3]Novikov, M. L., USSR Patent No. 109,750, 1956.
[4]Kudrjavtsev, V. N., Epicycloidal Trains, Mashgis, 1966.
[5]Studer, R.M., US Patent No. 3533300, 1970.
[6]Winter, H., and Looman, J.,“Tools for Making Helical Circular Arc Spur Gears,”VDI Berichte No. 47, 1961.
[7]Chinese Standard, J. B. 2940-81, 1981.
[8]Zhang, G., Xu, H., Long, H., Kato, M., and Deng, G.,“The Double Involute Gear with Ladder-Shaped Teeth,”International Gearing Conference, pp.507-512, 1994.
[9]Tsay, C.B., and Fong, Z.H.,“Tooth Contact Analysis for Helical Gear with Pinion Circular Arc Teeth and Gear Involute Shaped Teeth,”Transactions of the ASME, Vol. 111, pp.278-284, June 1989.
[10]Tsay, C.B., and Fong, Z.H.,“Computer Simulation and Stress Analysis of Helical Gears with Pinion Circular Arc Teeth and Gear Involute Teeth,”Mechanism & Machine Theory, Vol. 26, No.2, pp.145-154, 1991.
[11]Litvin, F.L., Feng, P.-H., Townsend, D.P., and Handschuh, R.F. “Determination of Principal Curvatures and Contact Ellipse for Profile Crowned Helical Gears,” Transactions of the ASME, Vol. 121, pp.107-111, March 1999
[12]Litvin, F.L., and Lu, J.,“Computerized Design and Generation of Double Circular-Arc Helical Gears with Low Transmission Errors,”Comput. Methods Appl. Mech. Engrg, Vol. 127, No. 1-4, pp57-86, Nov 1995.
[13]Litvin, F.L., Chen, N.X., Lu, J., and Handschuh, R.F., “Computerized Design and Generation of Low-Noise Helical Gears with Modified Surface Topology,” ASME Journal of Mechanical Design, Vol, 117, No. 2, pp.254-261, June 1995.
[14]Litvin, F.L., “Theory of Gearing,” NASA Reference Publication 1212, Washington D.C. 1989.
[15]Janninck, W.K., “Contact Surface Topology of Worm Gear Teeth,” Gear Technology, pp.31-47, March/April 1988.
[16]Litvin, F.L., “Gear Geometry and Applied Theory,” Prentice Hall Publication, New Jersey, 1994.
[17]Reishauer CNC Gear Grinding Machines, Catalogs, Switzerland.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top