一、中文部分
王進德與蕭大全 (2002),「類神經網路與模糊控制理論入門」,全華科技圖書股份有限公司,台北。
官旻慧 (2005),「以財務比率衡量公司信用風險」,世新大學財務金融研究所碩士論文。林豐澤 (2005),「演化式計算下篇:基因演算法以及三種應用實例」,智慧科技與應用統計學報,第三卷第一期,29-56頁。林宗勳 (2006),「Support Vector Machine簡介」,台灣大學通訊與多媒體實驗室。
徐瑋佑 (2007),「互聯電力系統中自動發電控制最佳化之研究」,中原大學機械工程學系碩士論文。陳肇榮 (1983),「運用財務比率預測企業財務危機之實證研究」,國立政治大學企業管理研究所博士論文。黃博怡、張大成與江欣怡 (2006),「考慮總體經濟因素之企業危機預警模式」,企業風險管理季刊,第二卷第二期,75-89頁。
黃小玉 (1988),「運用財務比率預測企業財務危機之實證研究」,私立淡江大學管理科學研究所碩士論文。
黃振豐與呂紹強 (2000),「企業財務危機預警模式之研究─以財務及非財務因素建構」,當代會計期刊,第一卷第一期,19-40頁。
黃承龍、陳穆臻與王界人 (2004),「支援向量機於信用評等之應用」,計量管理期刊,第一卷第二期,155-172頁。
葉怡成 (2009),「類神經網路模式應用與實作」,儒林圖書有限公司,台北。
楊啟洲 (2004),「以倒傳遞類神經網路作為授信風險預測之研究」,中華大學科技管理碩士論文。雷祖強、周天穎、萬絢、楊龍士與許晉嘉 (2007),「空間特徵分類器支援向量機之研究」,航測及遙測學刊,第十二卷,第二期,145-163頁。潘玉葉 (1990),「台灣股票上市公司財務危機預警分析」,淡江大學管理科學研究所博士論文。
鄧志豪 (2000),「以分類樣本偵測地雷股-新財務危機預警模型」,國立政治大學金融研究所碩士論文。賴世芳 (2006),「基層農會信用部金融預警系統使用倒傳遞類神經網路」,中華大學科技管理研究所碩士論文。二、英文部分
Altman, E. I. (1968), “Financial Ratios, Discriminant Analysis, and the Prediction of Corporate Bankruptcy,” Journal of Finance, Vol. 23, No. 4, pp. 589-609.
Atiya, A. F. (2001), “Bankruptcy Prediction for Credit Risk Using Neural Networks: A Survey and New Results,” IEEE Transactions on Neural Networks, Vol. 12, No. 4, pp. 929-935.
Beaver, W. H. (1966), “Financial Ratios as Predictors of Failure,” Journal of Accounting Research (Supplement), Vol. 4, No. 3, pp. 71-111.
Blum, M. (1974), “Failing Company Discriminant Analysis,” Journal of Accounting Research, Vol. 12, No. 1, pp. 1-25.
Coats, P. K. and L. F. Fant (1993), “Recognizing financial distress patterns using a neural network tool,” Financial Management, Vol. 22, No. 3, pp. 307-327.
Deakin, E. B. (1972), “A Discriminiant Analysis of Predictors of Business Failure,” Journal of Accounting Research, Vol. 10, No. 1, pp. 167-179.
Fletcher, D and E. Goss (1993), “Forecasting with neural network: An
application using bankruptcy data,” Information and Management, Vol. 24, No. 3, pp. 159-167.
Goldberg, D. E. (1989), Genetic algorithms in search, optimization and machine learning, Reading, MA: Addison Wesley.
Gunn, S. R. (1998), Support Vector machines for classification and regression, Technical Report, University of Southampton.
Holland, J. H. (1975), Adaptation in natural and artificial systems, Ann Arbor, MI: The University of Michigan Press.
Hopwood, W., J. C. Mckeown and J. F. Mutchler (1994), “A Reexamination of Auditor versus Model Accuracy within the Context of the Going-concern Opinion Decision,” Contemporary Accounting Research, Vol. 10, No. 2, pp. 409-431.
Koh, H. C. and S. S. Tan (1999), “A neural network approach to the prediction of going concern status,” Accounting and Business Research, Vol.29, No. 3, pp. 211-216.
Laitinen, E. K. (1991), “Financial Ratios and Different Failure Process,” Journal of Business Finance and Accounting, Vol. 18, pp. 613-630.
Lau, H. L. (1987), “A Five-State Financial Distress Prediction Model,” Journal of Accounting Research, Vol. 25, No. 1, pp. 127-138.
Martin. D (1977), “Early Warning of Bank Failure,” The Journal of Banking and Finance, Vol. 1, No. 3, pp.249-276.
Min, J. H. and Y. C. Lee (2005), “Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters,” Expert Systems with Applications, Vol. 28, pp. 603-614.
Min, S. H., J. Lee and I. Han (2006), “Hybrid genetic algorithms and support vector machines for bankruptcy prediction,” Expert Systems with Applications, Vol. 31, pp. 652-660.
Odom, M. D. and R. Sharda (1990), “A Neural Network Model for Bankruptcy Prediction,” Proceedings of the IEEE International Conference on Neural Networks, Vol. 2, pp. 163-168.
Ohlson. J. A. (1980), “Financial Ratio And Probabilistic Prediction of Bankruptcy,” Journal of Accounting Research, Vol. 18, No. 1, pp. 109-131.
Psillaki, M, I. E. Tsolas and D. Margaritis (2010), “Evaluation of credit risk based on firm performance,” European Journal of Operational Research, Vol. 201, pp. 873-881.
Rezaee, Z. (2005), “Causes, Consequence, and Deterrence of Financial Statement Fraud.” Critical Perspective on Accounting, Vol. 16, No. 3, pp. 277-298.
Salchenberger, L. M., E. M. Cinar and N. A. Lash (1992), “Neural Networks: A New Tool for Predicting Thrift Failures,” Decision Sciences, Vol. 23, No. 4, pp. 899-916.
Shin, K. S. and Y. J. Lee (2002), “A Genetic Algorithm Application in Bankruptcy Prediction Modeling,” Expert Systems with Applications, Vol. 23, No. 3, pp. 321-328.
Shin, K. S., T. S. Lee and H. Kim (2005), “An application of support vector machines in bankruptcy prediction model,” Expert Systems with Applications, Vol. 28, pp. 127-135.
Shumway, T. (2001), “Forecasting Bankruptcy More Accurately: A Simple Hazard Model,” Journal of Business, Vol. 74, No. 1, pp.101-124.
Smith, R. F. and A. H. Winkor (1930), “A Test Analysis of Unsuccessful Industrial Companies,” University of Illinois, Bureau of Business Research, Vol. 31.
Smith, R. F. and A. H. Winkor (1935), “Change in financial Structure of Unsuccessful Industrial Corporations,” University of Illinois, Bureau of Business Research, Vol. 51, pp.20-31.
Vapnik, V. N. (1995), The Nature of Statistical Learning Theory, Springer, NY, USA.
Wasserman, P. D. (1989), Neural Computing: Theory and Practice, Van
Nostrand Reinhold, NY: The Free Press.
Wruck, K. H. (1990), “Financial Distress, Reorganization, and Organizational Efficiency,” Journal of Financial Economics, Vol. 27, No. 2, pp. 419-444.
Wu, C. H., G. H. Tzeng, Y. J. Goo and W. C. Fang (2007), “A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy,” Expert Systems with Applications, Vol. 32, No. 2, pp. 397-408.
Youn, H. and Z. Gu (2010), “Predicting Korean lodging firm failures: An artificial neural network model along with a logistic regression model,” International Journal of Hospitality Management, Vol. 29, pp. 120-127.
Zmijewski, M. E. (1984), “Methodological Issues Related to the Estimation of Financial Distress Prediction Models,” Supplement to Journal of Accounting Research, Vol.22, pp. 59-82.