跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李婉華
研究生(外文):Wan-Hua Lee
論文名稱:含5,6-二氟苯並[1,2,5]噻二唑之側鏈型共軛高分子合成及其光伏特性研究
論文名稱(外文):Synthesis of 5,6-Difluorobenzo[1,2,5]thiadiazole Derivative Based Side-Chain Conjugated Polymers for Photovoltaic Solar Cells
指導教授:李榮和李榮和引用關係
指導教授(外文):Rong-Ho Lee
口試委員:鄭如忠黃智峯
口試日期:2014-11-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:59
中文關鍵詞:苯並二噻吩噻吩三苯胺側鏈型共軛高分子異質接面有機太陽能電池有機光伏元件。
外文關鍵詞:Benzodithiophenethiophenetriphenylamineside-chain conjugated polymersphotovoltaic performancebulk heterojunction cell.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
由於共軛高分子能階影響著高分子之可吸收太陽光範圍,以及高分子太陽能電池之開路電壓激子分離能力、及電荷傳輸等光伏性質,所以在高分子主鏈上導入具有強拉電子性之含氟Benzodithiophene (BT-F) 低能隙基團,欲使材料之吸收光譜有效紅位移,兼具低能隙與低HOMO能階的性質。並在高分子主鏈導入由苯胺基團所組成之共軛側鏈,以增加高分子結構平面性,設計成主鏈具有推拉電子特性之雙極性 (bipolar) 結構與側鏈推電子特性之二維 (2D) 型共軛高分子。依據導入不同BT-F含量,分別合成出PBTFA11 、PBTFA12 及PBTFA13三種共軛型高分子,再經由NMR鑑定確認聚合物之BT-F含量。經由 UV-vis 吸收光譜分析,結果顯示 PBTFA11 於薄膜狀態下之主要吸收波長在417.1nm、557.2 nm與717.0 nm,PBTFA12 於薄膜狀態下之主要吸收波長在417.3nm與576.2 nm,PBTFA13 於薄膜狀態下之主要吸收波長在416.2nm與556.6 nm,三者均在可見光區有明顯的吸收,並且隨著BT-F含量增加其吸收波長產生紅位移、吸收範圍變廣。由吸收波長計算出PBTFA11、PBTFA12與 PBTFA13 的能隙分別為1.54、1.59及1.69 eV。此外,藉由原子力徑分析儀觀察共軛高分子與碳六十衍生物PC61BM之複合膜的表面型態。結果顯示高分子與PC61BM均呈現良好奈米尺寸級的相分離,可有效分離與傳遞激子所產生之電子與電洞。在光伏特性上的表現上,以 PBTFA13摻混 PC61BM 比例1:3 (w/w) 表現最佳,電池之開路電壓VOC值爲0.59 V 、電流密度Jsc值爲3.30 mA/cm2 、填充因子FF值爲0.47 及光電轉換效率PCE值爲 0.92 % 。PBTFA13摻混PC71BM比例1:3 (w/w)所製得之電池元件,其光電轉換效率更高達3.02%以上。

In this study, 5,6-difluorobenzo[1,2,5]thiadiazole derivative (BT-F) based conjugated polymers with different content of triphenylamine based pendants were synthesized via stilling coupling reactions. The absorption pecks of PBTFA11 were observed at 417.1, 557.2, and 717.0 nm. The absorption pecks of PBTFA12 were observed at 417.3 and 576.2 nm . In addition, two absorption pecks of PBTFA13 were observed at 416.2 and 556.6 nm. The UV-vis absorptin wavelength was red-shiffed as BT-F cintent was increased. The bandgap energies of PBTFA11,PBTFA12, and PBTFA13 were 1.54,1.59,and 1.69 eV, respectively. A series of bulk heterojuction solar cells based on the active layer of PBTFA11/PC61BM, PBTFA12/PC61BM, and PBTFA13/PC61BM blends were fabricated. The morphologise of polymer/PC61BM blend films were studied by AFM. AFM images indicated that the polymer and PC61BM were phase separated in nanoscale. This is favorable for the charge separation and transefer of the carriers.The power conversion efficiency (PCE) was strongly dependent on the composition of the blends. The PCE values of PBTFA13/PC61BM based solar cells were larger than those of PBTFA11/PC61BM and PBTFA12/PC61BM based solr cells. A power conversion efficiency (PCE) of 0.92%, a short-circuit current density of 3.30mA/cm2 , an open-circuit voltage of 0.59 V , and a fill factor of 0.47 were observed for solar cell based on the active layer PBTFA13/PC61BM (1:3, w/w). The PCE value of PBTFA13 based PSC was further enhanced to 3.02% by using the PBTFA13/PC71BM blend film as photoactive layer.

第一章 緒論 1
1.1. 前言 1
1.2. 再生能源分類 1
1.3. 太陽光譜照度 1
1.4. 太陽能電池分類 2
1.4.1. 無機太陽能電池 4
1.4.2. 有機太陽能電池 5
1.5. 有機太陽能電池元件結構 8
1.5.1. 單層結構 8
1.5.2. 雙層異質接面結構 9
1.5.3. 混摻異質接面結構 10
1.5.4. 規則異質接面結構 11
1.5.5. 多層結構 12
1.6. 有機太陽能電池工作原理 12
1.6.1. 有機太陽能電池的特性分析[35] 14
第二章 文獻回顧與研究動機 17
2.1. 設計理想太陽能高分子結構 17
2.2. 主鏈型共軛高分子(main-chain conjugated polymers) 20
2.3. 推-拉電子型低能階共軛高分子 (donor-π-acceptor low band gap polymer) 21
2.4. 側鏈共軛高分子(side-chain conjugated polymers) 22
2.4.1. Pendent D-π-A 23
2.4.2. Pendent D-π-D polymer 23
2.5. Benzodithiophene當強拉電子基 26
2.6. 主鏈上導入含氟官能基之效應 26
2.7. 研究動機 28
第三章 實驗 29
3.1. 化學藥品 29
3.2. 溶劑前處理 31
3.3. 實驗介紹 32
3.3.1. 單體合成 32
3.4. 共軛高分子化合物的元件製作 33
3.4.1. 光伏元件製備 33
3.4.2. Hole-only元件製備 33
3.5. 實驗檢測儀器 34
第四章 結果與討論 36
4.1. 共軛高分子基本特性分析 36
4.1.1. 分子量分析 36
4.2. 溶解性 36
4.3. 熱性質分析 37
4.4. 光學特性分析 38
4.4.1. 紫外光-可見光光譜(UV-vis)分析 38
4.5. 共軛高分子材料摻混 PC61BM 之光學特性分析 40
4.5.1. 摻混 PC61BM 之紫外光-可見光光譜(UV-vis)分析 40
4.6. 電化學特性分析-循環伏安法(Cyclic Voltammetry, CV) 42
4.7. 元件光伏特性性質分析 43
4.7.1. 表面型態分析-原子力顯微鏡(AFM) 43
4.7.2. 光伏元件分析 49
4.8. 高分子太陽電池之單光波長入射能量轉換效率分析(IPCE) 54
第五章 結論 56
第六章 參考文獻 57


1.國際油價走勢計供需動態分析年報,103年。
2.Japan Photovoltic Energy Association(JPEA)-
3.http://en.wikipedia.org/wiki/solar_radiation
4.科學發展2009 年7 月, 439 期
5.工業材料雜誌,太陽光電技術之介紹,第182期91年2月。
6.M. Grätzel, Inorg. Chem, 2005, 44, 6841.
7.A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science. 2011, 334, 629.
8.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev , 2010, 110, 6595,12.
9.C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett, 2004, 384, 372.
10.W. J. E. Beek, Martijn, M. Wienk, Ren’e A. J. Janssen, J. Mater. Chem , 2005, 15, 2985.
11.W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science, 2002, 295, 2425.
12.K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, C. A. Grimes, Langmuir, 2007, 23, 12445.
13.M. T. Lloyd, J. E. Anthony, G. G. Malliaras, Materials Today, 2007, 10, 34.
14.K. M. Coakley, M. D. McGehee, Chem. Mater, 2004, 16, 4533.
15.H. Kalmans, M. J. Pope, Chem. Phys, 1958, 30, 585.
16.A. K. Ghosh, T. J. Feng, Appl. Phys, 1978, 49, 5982.
17.A. F. Eftaiha, J. P. Sun, I. G. Hill, G .Welch , J . Mater. Chem. A, 2014, 2, 1201.
18.C. W. Tang, Appl. Phys. Lett, 1986, 48, 183 .
19.J. J. M. Halls, K .Pichler, R. H. Friend, S. C.Moratti, A. B. Holmes, Appl. Phys. Lett, 1996, 68, 3120.
20.F. Yang, M. Shtein, S. R. Forrest, Nat Mater, 2005, 4, 37.
21.G . Yu, J. Gao, J. Hummelen, F. Wudl, A. Heeger, J. Science, 1995, 270, 1789.
22.G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater, 2009, 21, 1323.
23.J. W. Rumer, B. C. Schroeder, C. B. Nielsen, R. S. Ashraf, D. Beatrup, H. Bronstein,S. J. Cryer, J. E. Donaghey, Thin Solid Films, 2014, 560, 82.
24.K. M. Su, K. J. Sung, C. J. Cheol, S. Max, L. J. Guo, K, Jinsang, Appl. Phys. Lett, 2007, 90, 123113.
25.J. Y. Kim et al. Science , 2007,317, 222.
26.Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. , 2009, 109 (11), 5868.
27.M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger,
C. J. Brabec, Adv. Mater, 2006, 18, 789.
28.Y. Zhang, J. Zou, H. L. Yip, K. S. Chen, D. F. Zeigler, Y. S. Alex, K. Y. Jen, Chem. Mater, 2011, 23, 2289.
29.J. Roncali, Acc. Chem. Res, 2009, 42, 1719.
30.S. Kim, B. G. Kim, J. Kim, Appl. Mater. Interfaces, 2009, 1, 1264.
31.A.Yassar, L. Miozzo, R. Gironda, G. Horowitz, Prog. Polym. Sci ,2013, 38, 791.
32.Y. Li, Accounts of chemical res earch, 2012, 45, 5, 723.
33.B. C. Thompson, M. J. Frechet, Angew. Chem, Int. Ed, 2008, 47,58.
34.H. Zhou, L. Yang, S. Stoneking,W. You, ACS Appl. Mater. & Interfaces, 2010, 2, 1377.
35.Y. W. Li, L .Xue, H. Xia, B. Xu, S. Wen, W. J. Tian, Polym. Sci. A Polym. Chem, 2008, 46, 3970.
36.F. Huang, K. S. Chen, H. L. Yip, S. K. Hau, O. Acton, Y. Zhang, J. Luo, A. K. Y. Jen, J. Am. Chem. Soc, 2009,131, 13886.
37.Z. G. Zhang, S. Zhang, J. Min, C. Chui, J. Zhang, M. Zhang, Y. Li, Macromolecules, 2012, 45, 113.
38.H. J. Wang, L. H. Chan, C. P. Chen, S. L. Lin, R. H. Lee, R. J. Jeng, polymer, 2011, 52, 326.
39.H. J. Wang, J. Y. Tzeng, C. W. Chou, C. Y. Huang, R. H. Lee, R. J. Jeng , Polymer. Chem, 2013, 4, 506.
40.J. Hou, M. Park, S. Zhang, Y. Yao, L. Chen, J. Li, Y. Yang, Macromolecules, 2008, 41, 6012.
41.Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li, L. Yu, J. Am. Chem. Soc., 2009, 131, 56.
42.Y. Zou, A. Najari, P. Berrouard, S. Beaupre, B. Aich, Y. Tao, M. A. Leclerc, J. Am. Chem. Soc., 2010, 132, 5330.
43.H. Zhou, L. Yang, A. Stuart, S. Price, S. Liu, W. You, Angew. Chem. Int. Ed, 2011, 50, 2995.
44.S. Price, A. Stuart, L. Yang, H. Zhou, W. You, J. Am. Chem. Soc, 2011, 133, 4625.
45.J. Jiang, P. Yang, H. Chen, K. Wei, Chem. Commun, 2011, 47, 8877.
46.M. Zhang, H. Fan, X. Guo, Y. He, Z. Zhang, J. Min, J. Zhang, X. Zhan, Y. Li, Macromolecules, 2010, 43, 8714.
47.M. Zhang, X. Guo, Y. Li, Macromolecules, 2011,44, 8798.
48.J. L. Bredas, A. J. Heeger, Chem .Phys. Lett, 1994, 217, 507.
49.Y. Y. Liang, D. Q. Feng, Y. Wu, S. T. Tai, G. Li, C. Ray, L. P. Yu, J. Am. Chem. Soc, 2009,131,7792.
50.Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu , Adv. Mater, 2010, 22, E135.
51.Y. Wang, M. D. Watson, Macromolecules 2008, 41, 8643.
52.E. E. Havinga, W. Tenhoeve, H. Wynberg, Synth.Met, 1993, 55, 299.
53.J. P. Ferraris, A. Bravo, W. Kim, D. C. Hrncir, J . Chem. Soc. Chem. Commun, 1994,991.
54.A. Ajayaghosh, Chem. Soc. Rev, 2003, 32, 181.
55.H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu ,Y. Wu, G. Li, Nat. Photonics, 2009, 3, 649.
56.M. M. Wienk, M. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater, 2008, 20, 2556.
57.G. Li, V. Shrotriya, J. Huang, Y. Yao, K. Emery, Y. Yang, Nat. Mater, 2005, 4, 864.
58.Y. Zhou, Q. Sun, Z. Tan, H. Zhong, C. Yang, Y. Li, J. Phys. Chem. C , 2007 ,111, 6862.
59.C. H. Cheon, S. H. Joo, K. Kim, H. W. Shin, and Y. R. Kim. Macromolecules, 2005, 38, 6336.
60.J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J.Y. Kim, K. Lee, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc, 2008,130, 3619.
61.M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. Hal, R.¬ A. J. Janssen, Angew. Chem. Int, 2003,42, 3371.
62.J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery,C. C. Chen, J. Gao, G. Li and Y. Yang, Nature Commun. , 2012, 4, 1446.
63.H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater., 2004, 14, 1005.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊