跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭喻瑋
研究生(外文):Yu-wei Hsiao
論文名稱:使用內聚力模型預測複合材料單搭接頭之拉伸行為
論文名稱(外文):The Tensile Behavior of Composite Adhesive Bonded Single Lap Joint by Using Cohesive Zone Model
指導教授:劉文縉
口試委員:劉文縉黃宗立朱智義
口試日期:2013-06-19
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械與電腦輔助工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:複合材料單搭接頭內聚力模型脫層
相關次數:
  • 被引用被引用:0
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
複合材料具有良好的比剛性、比強度可有效強化結構,使結構輕量化,加上生產技術日益成熟,複材的應用面逐步擴大至各個產業。複合材料在接合時若使用機械連接,則必須在複合材料結構上開孔,但在傳遞負載時,開孔會破壞材料的連續性,降低結構強度與承載能力,因此若採用膠合技術能避免複材因接合而造成損傷,並能改善應力集中、使應力均勻分布、結構輕量化,因此在碳纖結構中膠接是一種取代機械連接的常用技術。

本研究主要探討複合材料單搭接頭 single lap joint 承受拉伸負載時膠合介面之脫層及力學行為,過程中考慮負載所造成的幾合非線性行為。膠合介面透過內聚力模型 cohesive zone model 配合二次公稱應力準則及能量釋放率,能有效模擬膠合介面脫層起始與脫層擴展及其所相應之應力分布狀況。
Abstract

Composite materials have excellent specific stiffness, and specific strength, that can both reinforce the structure effectively and make it lightweight. As the production technology is becoming more and more advanced, composite materials have been widely applied in many industries. Ifmechanical connection is applied during the process of combination, there must be an opening on the structure of multiple materials. But the opening might destroy the continuity of material, decreasing the strength of structure, and the ability of loading. Therefore, by using bonded joint technology, the damage during combination can be avoided, and we can improve stress concentration to let stress distributeuniformly and obtain a more lightweight structure. The bonded joint technology in composite structural, is now a common technology that has replaced mechanical connection.

The study is aimed at the Adhesive Bonded interface of Delamination and mechanical behavior when the composite Adhesive Bonded single lap joint supports Tensile load. In the process, it considers the geometric nonlinear behavior that the load caused. With adhesive Bonded interface matching up with Quadratic nominal stress criterion and energy release rate by cohesive zone model, it can model Adhesive Bonded interface Initial
delamination, delamination expansion and the condition of corresponding Stress distribution.
第一章 緒論............. 1
1.1 簡介 ............. 1
1.2 文獻回顧 ......... 3
1.2.1 膠接接頭理論模型研究 .... 3
1.2.2 膠接接頭數值模擬研究 .... 5
1.3 研究動機與方法 ... 7
1.4 研究架構 ........ 7

第二章 相關理論基礎 .......... 9
2.1 複合材料單層板三維應力應變關係 ... 9
2.1.1 各項異性彈性單層板應變應力 ..... 9
2.1.2 正交各向異性單層材料應力應變... 10
2.1.3 橫觀各向同性單層材料應力應變 ... 12
2.1.4 單層板的偏軸應力轉換 ......... 13
2.2 單搭接接頭本構模型建立 ........... 18
2.2.1 考慮 Timoshenko beam 理論之單搭接頭 ........................ 19
2.2.2 考慮 Timoshenko beam theory 之對稱複 合材料單搭接頭 .... 22
2.3 黏結劑塑性模型本構關係 .......... 26
2.3.1 Drucker Prager Models .... 27
2.4 內聚力模型 cohesive zone models CZM ....................... 29
2.4.1 曳引力-位移(Traction separation law ) .......................... 29
2.4.2 損傷起始 ................... 31
2.4.3 損傷演化 ................... 31
2.5 混合模式行為(Mixed mode beheavior). 33
2.5.1 混合模式行為下能量釋放率 ......... 34
2.5.2 脫層擴展 ...................... 35

第三章 數值模型與分析流程簡介 ........... 36
3.1 數值模型描述 ..................... 36
3.2 碳纖維與黏結劑材料說明 ............. 37
3.3 數值分析 ....................... 39
3.3.1 單搭接接頭疊層角度探討 ........... 41
3.3.2 黏結劑厚度探討 ................. 41

第四章 數值分析結果與討論 .............. 42
4.1 網格收斂性分析.................... 42
4.2 不同疊層角度之內聚力模型應力分析..... 44
4.2.1 單搭接頭脫層起始之最大變形量 ...... 45
4.2.2 膠合界面脫層起始應力探討 ......... 45
4.2.3 膠合界面脫層起始時應力分布狀況 .... 47
4.3 膠合界面脫層擴展形式 .............. 49
4.3.1 膠合界面脫層擴展時應力分布狀況 .... 51
4.3.2 脫層擴展節點應力-位移響應 ........ 53
4.4 黏結劑厚度對剪切應力與剝離應力之影響 .. 56

第五章 結論與未來展望 ................. 58
5.1 結論 ........................ 58
5.2 未來展望 ..................... 60
參考文獻 ............................ 61
附錄A .............................. 65
附錄B .............................. 67
參考文獻
[1] Toray’s Strategy for carbon Fiber composite materials, 3rd IT-2010
strategy seminar (Carbon Fiber Composite Materials).

[2] Tong and Steven, Analysis and design of structural bonded joints,
1999.

[3] Goland, M. and Reissner, E., The stresses in cemented lap joints.
Trans. ASME, J. Appl. Mech., 66(11), A17–A27, 1944.

[4] Hart-Smith, L. J., Adhesive-bonded single-lap joints. Douglas Aircraft
Co., NASA Langley report CR 112236, 1973.

[5] Allman, D.J., A theory for elastic stresses in adhesive bonded lap
joints, The Quarterly Journal of Mechanics and Applied Mathematics,
p.415, 1977.

[6] Chen, D. and Cheng, S., Analysis of adhesive-bonded single-lap
joints[j], J Appl Mech-T ASME, 50 (1): 109, 1983.

[7] Renton, W. J. and Vinson, J. R., The efficient design of adhesive
bonded joints. J. Adhes, 175–193, 1975.

[8] Dvorak, G., Zhang, J. and Canyurt, O., Adhesive tongue-and-groove
joints for thick composite laminates. Compos. Sci. Technol. 61, 1123–
1142, 2001.

[9] Panigrahi, S.K. and Pradhan, B., Three dimensional failure analysis
and damage propagation behaviour of adhesively bonded single lap
joints in laminated FRP composites. J. Reinf. Plast. Compos., 2007.

[10] Sun, W. and Yang, C., Fracture analysis of adhesive-bonded
single-lap composite joints, International SAMPE Technical
Conference, pp. 3931–3942, 2004.

[11] Needleman, A., A continuum model for void nucleation by inclusion
debonding [J]. Applied Mechanics, (54) : 525-531, 1987.

[12]Tvergaard, V. and Hutchinson, J.W., The influence of plasticity on the
mixed-mode interface toughness. J. Mech. Phys. Solids 41, 1119–
1135, 1993.

[13] Tvergaard, V. and Hutchinson, J.W., On the toughness of ductile
adhesive joints. J. Mech. Phys. Solids 44, 789–800, 1996.

[14] Yang, Q.D., Thouless, M.D. and Ward, S.W., Numerical simulations
of adhesively- bonded beams failing with extensive plastic
deformation. J. Mech. Phys. Solids 47, 1337–1353, 1999.

[15] Yang, Q.D., Thouless, M.D. and Ward, S.W., Elastic–plastic mode-II
fracture of adhesive joints. Int. J. Solids Struct. 38, 3251–3262,
2001.

[16] Yang, Q.D. and Thouless, M.D., Mixed-mode fracture analyses of
plastically-deforming adhesive joints. Int. J. Fract. 110, 175–187,
2001.

[17] Campilho, R.D.S.G. and Banea, M.D., Modelling adhesive joints
with cohesive zone models: effect of the cohesive law shape of the
adhesive layer, 2013.

[18] Luo, Q. and Tong, L., Analytical solutions for adhesive composite
joints considering large deflection and transverse shear deformation
in adherends, 2008.

[19] Lucas, F.M., Andreas, O. and Robert, D., Handbook of Adhesion
Technology, 2011.

[20] Luo, Q. and Tong, L., Analytical solutions for adhesive composite
joints considering large deflection and transverse shear deformation
in adherends, 2008.

[21] National Physical Laboratory, Manual for the calculation of elastic-
plastic materials models parameters, 2007.

[22] Louise Crocker, FEA of Adhesive Joints, 2001.

[23] ASTM International, Standard test method for lap shear adhesion for
fiber reinforced plastic (FRP) bonding1, 2008.

[24] Ji, G., Ouyang, Z., Li. G., Ibekwe, S. and Pang SS., Effects of
adhesive thickness on global and local Mode-I interfacial fracture of
bonded joints. Int. J. Solids Struct, 47:2445–58, 2010.

[25] Albert Turon Travesa, A simulation of delamination in composites
under quasi-static and fatigue koading using cohesive zone models,
2006

[26]ABAQUS 6.10 Analysis User’s Manual.

[27]Banea, M.B. and Silva, L. F. M. da, Adhesively bonded joints in
composite materials: An overview, 2009.

[28] Wang, Z.Y., Wang, L., Guo, W. Deng, H. Tong, J.W. and Aymerich,
F., An investigation on strain/stress distribution around the overlap
end of laminated composite single-lap joints, 2009.

[29] Anna Rudawska, Adhesive joint strength of hybrid assemblies:
Titanium sheet-composites and aluminium sheet-composites—
Experimental and numerical verification, 2010.

[30] Konstantinos, N., Anyfantis and Nicholas G. Tsouvalis, A novel
traction–separation law for the prediction of the mixed mode
response of ductile adhesive joints, 2011.

[31] Campilho, R.D.S.G. and Banea, M.D., Strength prediction of single-
and double-lap joints by standard and extended finite element
modelling, 2011.

[32] Sayman, O., Elasto-plastic stress analysis in an adhesively bonded
single-lap joint, 2012.

[33] O’Mahoney, D.C., Katnam, K.B., O’Dowd, N.P., McCarthy, C.T. and
Young, T.M., Taguchi analysis of bonded composite single-lap joints
using a combined interface–adhesive damage model, 2013.

[34] De Moura, M.F.S.F., Gonc-alves, J.P.M., Chousal, J.A.G. and
Campilho, R.D.S.G., Cohesive and continuum mixed-mode damage
models applied to the simulation of the mechanical behaviour of
bonded joints, 2008.

[35] Campilho, R.D.S.G., de Moura, M.F.S.F. and Domingues, J.J.M.S.,
Using a cohesive damage model to predict the tensile behaviour of
CFRP single-strap repairs, 2007.


[36] Konstantinos, N. and Nicholas, G., A novel traction–separation law
for the prediction of the mixed mode response of ductile adhesive
joints, 2011

[37] Konstantinos, N. Anyfantis, Analysis and design of composite‐to-
metal adhesively bonded joints, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊