跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林廣春
研究生(外文):Guang Chun Lin
論文名稱:摻雜鉺、鐿離子於Y2Ti2O7奈米粉體之上轉換螢光特性研究
論文名稱(外文):Up-converted Visible Luminescence Properties of Er3+ and Yb3+ Co-doped Y2Ti2O7 Nanocrystals
指導教授:丁初稷
指導教授(外文):Chu Chi Ting
口試委員:林祐仲王祥辰丁初稷
口試委員(外文):Yow Jon LinHsiang Chen WangChu Chi Ting
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:上轉換螢光材料燒綠石
外文關鍵詞:UpconversionLuminescence materialPyrochloreErbiumYtterbium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用溶膠凝膠合成法製備共摻雜鉺、鐿離子於Y2Ti2O7 奈米粉體,針對不同的鐿離子摻雜濃度與退火溫度來探討其上轉換螢光特性。
吾人使用溶膠凝膠合成法製備晶粒大小約為50~120 nm 的共摻雜鉺、鐿離子Y2Ti2O7 奈米粉體( (Er3+, Yb3+)-codoped Y2Ti2O7 ) 奈米粉體,在980 nm 紅外線雷射激發下,研究其粉體於可見光範圍之上轉換發光特性,其發光主峰值分別為409 nm (2H9/2 → 4I15/2) 之微弱藍光、547 nm (4S3/2 → 4I15/2) 之綠光與678 nm (4F9/2 → 4I15/2) 之紅光。
經由光致發光光譜量測結果顯示,隨著Yb3+摻雜濃度的提高,紅光與藍光強度會隨之提升,但綠光強度會隨之下降;(Er3+ 5%, Yb3+ 5%)-codoped Y2Ti2O7 於1000 ℃退火時可得最佳之發光亮度;當Er3+ 摻雜濃度為5%、Yb3+ 摻雜濃度為5% 於900 ℃的退火溫度下,其紅光 (678 nm) 之放射光具較長的螢光生命週期 (1010 μs)。經由n值計算可發現紅光與綠光上轉換機制皆為雙光子吸收,藍光上轉換機制為三光子吸收。

The (Er3+, Yb3+)-codoped Y2Ti2O7 nanocrystals were synthesized by the sol-gel method in this work. We were focused on the fluorescent properties of different annealing temperature and different dopent concentrations of ytterbium ions.
Er3+ (5%) & Yb3+ (5, 10, 15, 20%)-codoped Y2Ti2O7 nanocrystals with particle size of 50~120 nm were synthesized by the sol-gel method. The strong green band centered at 547 nm (4S3/2 → 4I15/2) and red band centered at 678 nm (4F9/2 → 4I15/2) visiable emission and weak blue band centered at 409 nm (2H9/2 → 4I15/2) emission were observed in codoped nanoparticles under the 980 nm laser diode excitation.
The intensity of red band and blue band were increasing by concentration of ytterbium, but the intensity of green was decreased. The sample of (Er3+ 5%, Yb3+ 5%)-codoped Y2Ti2O7 nanocrystals have the best of brightness under 1000 ℃ annealing by photoluminescence spectroscopy measurement. The longest life time (1010 μs) at red band (678 nm) was observed in (Er3+5%, Yb3+5%)-codoped Y2Ti2O7 under 900 ℃ annealing. The mechanism of up-converted red light and green light are two-photon excited state absorption, and the blue light is three-photon excited state absorption.

摘要......................................I
英文摘要...................................II
致謝......................................III
目次......................................Ⅳ
表目錄....................................VII
圖目錄....................................VIII
第一章 緒論................................1
1-1 前言...................................1
1-2 研究背景...............................2
第二章 文獻回顧與理論基礎....................4
2-1 螢光材料的介紹與分類....................4
2-1-1 螢光材料的分類........................4
2-1-2螢光材料的應用.........................6
2-2 發光機制簡介............................8
2-2-1 發光原理.............................8
2-2-2 螢光與磷光...........................9
2-2-3 史托克位移...........................9
2-2-4 反史托克發光..........................10
2-2-5 LaPorte 選擇律.......................10
2-2-6 自旋選擇律...........................11
2-3 稀土元素簡介............................11
2-3-1 稀土離子的電子躍遷....................12
2-3-2 稀土離子的發光機制....................12
2-4 螢光材料的組成與設計.....................13
2-5 影響螢光材料發光的因素...................16
2-5-1 主體晶格效應..........................16
2-5-2 濃度淬滅效應..........................17
2-5-3 雜質毒化..............................17
2-5-4 熱淬滅................................18
2-6 螢光材料製備方法.........................18
2-6-1 固態合成法............................19
2-6-2 溶膠凝膠法............................19
2-6-3 共同沉澱法............................20
2-7 燒綠石結構介紹..........................20
2-7-1 Pyrochlore結構介紹....................20
2-7-2 Y2Ti2O7結構介紹.......................21
第三章 實驗方法.............................35
3-1 實驗藥品................................35
3-2 製程設備................................36
3-3 量測設備................................36
3-3-1 場發射掃描式電子顯微鏡..................36
3-3-2 X光單晶繞射儀..........................37
3-3-3 光致發光光譜儀.........................38
3-3-4 螢光生命週期系統.......................39
3-4 實驗步驟................................39
第四章 結果與討論............................45
4-1 X光繞射分析..............................45
4-2 場發射掃描式電子顯微鏡分析................46
4-3 光致發光光譜分析.........................47
4-3-1 全光譜分析.............................47
4-3-2 雷射功率對光譜強度之影響................49
4-3-3 發光機制探討...........................50
4-4 螢光生命週期分析..........................51
第五章 結論與未來展望.........................67
參考文獻.....................................69

[1] 劉如熹、劉宇恆,”發光二極體用氧氮螢光粉介紹”,全華科技圖書股份有限公司,台北市,民國95年。
[2] S. Cotton, “Lanthanides and Actinides”, Macmillan, London, 1990, p. 191
[3] C. Feldmann, T. Jüstel, C. R. Ronda, P. J. Schmidt, Adv. Funct. Mater. 13, 511 (2003).
[4] R. M. Clegg, X. F. Wang, B. Herman, Chemical Analysis Series, 137, 196.
[5] J. R. Lakowicz, “Principles of Fluorescence Spectroscopy”, Springer, New York, 2006, p.1.
[6] G. Blasse, and B. C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, 1994, p. 13.
[7] G. Blasse, and B. C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, 1994, p. 34.
[8] G. Liu, B. Jacquier, “Spectroscopic Properties of Rare Earths in Optical Materials”, Springer, New York, 2005, p.109.
[9] B.E. Douglas, D.H. McDaniel, J.J. Alexander, “Concepts and Models of Inorganic Chemistry”, John Wiley and Sons, Inc., New York,1994.
[10] S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 3.
[11] P. Atkins, D. de Paula, “Physical Chemistry”, Oxford university press, 1997, p. 207.
[12] 工研院,”材料產業暨稀土材料發展研討會論文集”,工研院編印,台灣,民國93年。
[13] G. H. Dieke, H. M. Crosswhite, Appl. Optics 2, 675 (1963).
[14] 王書任、林仁鈞,”讓LED發光的功臣-螢光粉”,科學發展,435
期,民國98年3月。
[15] E. N. Harvey, “A history of luminescence”, American philosophical society, Philadelphia, 1957, p. 18.
[16] J. A. DeLuca, J. Chem. Educ. 57, 541 (1980).
[17] 劉如熹、王健源,”白光發光二極體製作技術”,全華科技圖書股份有限公司,台北市,民國90年。
[18] W. R. Blumenthal, D. S. Philips, J. Am. Ceram. Soc. 79, 1047 (1996).
[19] R. Morimo, K. Matae, Meter. Res. Bull. 24, 175 (1989).
[20] J. Lin, Mater. Sci. Enger. B64, 73 (1999).
[21] M. Gomi, Jpn. J. Appl. Phys. 35, 1798 (1996).
[22] S. W. Han, J. S. Gardner, C. H. Booth, Phys. Rev. B 69, 024416 (2004).
[23] A. R. Cleave, “Atomic Scale Simulations for Waste Form Applica- tions”, Department of Materials Imperial College of Science, Technology and Medicine, 2006, p. 20.
[24] L. M. Ershova, B. V. Ignat`ev, L. P. Kusalova, E. E. Lomonova, V. I. Myzina, V. M. Tatarintsev, L. G. Shcherbakova, Inorg. Mater 13, 1634 (1977).
[25] H. C. Gupta, S. Brown, J. Phys. Chem. Solids 64, 2205 (2003).
[26] M. Hamoumi, M. Wiegel, G. Blasse, J. Solid State Chem. 108, 410 (1994).
[27] A. F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza, U. Amador, Solid State Sci. 7, 343 (2005).
[28] S. R. Stock, B. D, Cullity, Elements of X-Ray Diffraction, Prentice Hall, 2001, p. 170.
[29] ASTM JCPDS File No. 42-0413 (Y2Ti2O7) (1997).
[30] K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, Y. S. Yang, Chem. Mater. 17, 2729 (2005).
[31] 鄭信民、林麗娟,”X光繞射應用簡介”,工業材料雜誌,181期,民國91年1月。
[32] F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, M. Bettinelli, Chem. Mater. 15, 2737 (2003).
[33] C. C. Ting, S. Y. Chen, H. Y. Lee, J. Appl. Phys. 94, 2102 (2003).
[34] M. Langlet, C. Coutier, J. Fick, M. Audier, W. Meffre, B. Jacquier, R. Rimet, Opt. Mater. 16, 463 (2001).
[35] J. Shan, W. Kong, R. Wei, N. Yao, Y. Ju, J. Appl. Phys. 107, 054901 (2010).
[36] D. Mariano da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, M. J. V. Bell, Appl. Phys. Lett. 90, 081913 (2007).
[37] X. Qiao, X. Fan, J. Wang, M. Wang, J. Appl. Phys. 99, 074302-1-074302-8 (2006).
[38] F. Vetrone, J. C. Boyer, J. A. Capobianco, J. Phys. Chem. B 107, 10747-10752 (2003).
[39] X. Wang, J. Qiu, J. Song, J. Xu, Y. Liao, H. Sun, Y. Cheng, Z. Xu, Opt. Comm. 280, 197 (2007).
[40] G. S. Maciel, N. Rakov, M. Fokine, I. C. S. Carvalho, C. B. Pinheiro, Appl. Phys. Lett. 89, 081109-1-081109-3 (2006).
[41] X. Qin, T. Yokomori, Y. Ju, Appl. Phys. Lett. 90, 073104 (2007).
[42] P. Ghosh, S. Sadhu, T. Sen, A. Patra, Bull. Mater. Sci. 31, 461 (2008).
[43] C. C. Ting, Y. S. Chiu, C. W. Chang, L. C. Chuang, J. Solid State Chem. 184, 563 (2011).
[44] D. Solis, E. D. Rosa, O. Meza, L. A. Diaz-Torres, P. Salas, C. Angeles-Chavez, J. Appl. Phys. 108, 023103 (2010).
[45] G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, F. P. Wang, Phys. Rev. B 75, 195204 (2007).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top