|
[1]C.-H. Wu and M.-Y. Cheng, “Study on Chaotic Motion of an Under-actuated Two-Link Robot Arm,” in Proceedings of the 2008 International Automatic Control Conference. [2]M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974. [3]A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford, 2004. [4]R. Tymerski and V. Vorperian, “Generation and Classification of PWM DC-to-DC Converters,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 24, No. 6, pp. 743-754, 1988. [5]M. Alfayyoumi, A. H. Nayfeh, and D. Borojevic, “Modeling and Analysis of Switching-Mode DC-DC Regulators,” Int. J. Bifur. Chaos, Vol. 10, No. 2, pp. 373-390, 2000. [6]A. El Aroudi, M. Debbat, and R. Giral, “Bifurcations in DC-DC Switching Converters: Review of Methods and Applications,” Int. J. Bifur. Chaos, Vol. 15, No. 5, pp. 1549-1578, 2005. [7]C.-K. Tse and M. D. Bernardo, “Complex Behavior in Switching Power Converters,” in Proceedings of the IEEE, Vol. 90, No. 5, 2002. [8]M. di Bernardo and F. Vasca, “Discrete-Time Maps for the Analysis of Bifurcations and Chaos in DC/DC Converters,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 47, No. 2, pp. 130-143, 2000. [9]K. W. E. Cheng, M. Liu, and J. Wu, “Chaos Study and Paramerter-Space Analysis of the DC-DC Buck-Boost Converter,” IEE Proc.-Electr. Power Appl., Vol. 150, No. 2, pp. 126-138, 2003. [10]A. E. Aroudi, L. Benadero, E. Toribio, and S. Machiche, “Quasiperiodicity and Chaos in the DC-DC Buck-Boost Converter,” Int. J. Bifur. Chaos, Vol. 10, No. 2, pp. 359-371, 2000. [11]A. E. Aroudi, L. Benadero, E. Toribio, and G. Olivar, “Hopf Bifurcation and Chaos from Torus Breakdown in a PWM Voltage-Controlled DC-DC Boost Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 46, No. 11, pp. 1374-1382, 1999. [12]William C.-Y. Chan and C.-K. Tse, “Study of Bifurcations in Current-Programmed DC/DC Boost Converters: From Quasi-Periodicity to Period-Doubling,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 44, No. 12, pp. 1129-1142, 1997. [13]Jonathan H. B. Deane, “Chaos in a Current-Mode Controlled Boost dc-dc Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 39, No. 8, pp. 680-683, 1992. [14]S. Parui and S. Banerjee, “Bifurcations Due to Transition From Continuous Conduction Mode to Discontinuous Conduction Mode in the Boost Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 50, No. 11, pp. 1464-1469, 2003. [15]D. C. Hamill, Jonathan H. B. Deane, and D. J. Jefferies, “Modeling of Chaotic DC-DC Converters by Iterated Nonlinear Mappings,” IEEE. Trans. on Power Electronics, Vol. 7, No. 1, pp. 25-36, 1992. [16]Y. Ma, H. Kawakami, and C.-K.Tse, “Bifurcation Analysis of Switched Dynamical Systems With Periodically Moving Borders,” IEEE Trans. on Circuits and Systems-I: Regular Paper, Vol. 51, No. 6, pp. 1184-1193, 2004. [17]S. Maity, D. Tripathy, T. K. Bhattacharya, and S. Banerjee, “Bifurcation Analysis of PWM-1 Voltage-Mode-Controlled Buck Converter Using the Exact Discrete Model,” IEEE Trans. on Circuits and Systems-I: Regular Paper, Vol. 54, No. 5, pp. 1120-1130, 2007. [18]E. Fossas and G. Olivar, “Study of Chaos in the Buck Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 43, No. 1, pp. 13-25, 1996. [19]S. Banerjee, “Coexisting Attractors, Chaotic Saddles, and Fractal Basins in a Power Electronic Circuit,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 44, No. 9, pp. 847-849, 1997. [20]Z. T. Zhusubaliyev, E. A. Soukhoterin, and E. Mosekilde, “Border-Collision Bifurcations on a Two-Dimensional Torus,” Chaos, Solitons and Fractals, Vol. 13, No. 9, pp. 1889-1915, 2002. [21]G. Yuan, S. Banerjee, E. Ott, and J. A. Yorke, “Border-Collision Bifurcations in the Buck Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 45, No. 7, pp. 707-716, 1998. [22]Z. T. Zhusubaliyev, E. Mosekilde, and S. Maity, S. Mohanan, and S. Banerjee, “Border Collision Route to Quasiperiodicity: Numerical Investigation and Experimental Confirmation,” Chaos, Vol. 16, No. 2, 2006. [23]Z. T. Zhusubaliyev, E. A. Soukhoterin, and E. Mosekilde, “Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter,” Mathematics and Computers in Simulation, Vol. 73, No. 6, pp. 364-377, 2007. [24]Z. T. Zhusubaliyev and E. Mosekilde, “Torus Birth Bifurcations in a DC/DC Converter,” IEEE Trans. on Circuits and Systems-I: Regular Paper, Vol. 53, No. 8, pp. 1839-1850, 2006. [25]Z. T. Zhusubaliyev, E. A. Soukhoterin, and E. Mosekilde, “Quasi-Periodicity and Border-Collision Bifurcations in a DC-DC Converter With Pulsewidth Modulation,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 50, No. 8, pp. 1047-1057, 2003. [26]C.-K. Tse, D. Dai, and X. Ma, “Symbolic Analysis of Bifurcation in Switching Power Converters: A Practical Alternative Viewpoint of Border Collision,” Int. J. Bifur. Chaos, Vol. 15, No. 7, pp. 2263-2270, 2005. [27]M. di Bernardo, M. I. Feigin, S. J. Hogan, and M. E. Homer, “Local Analysis of C-Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems,” Chaos, Solitons and Fractals, Vol. 10, No. 11, pp. 1881-1908, 1999. [28]M. D. Bernardo, F. Garofalo, L. Glielmo, and F. Vasca, “Switchings, Bifurcations, and Chaos in DC/DC Converters,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 45, No. 2, pp. 133-141, 1998. [29]T. Saito, T. Kabe, Y. Ishikawa, Y. Matsuoka, and H. Torikai, “Piecewise Constant Switched Dynamical Systems in Power Electronics,” Int. J. Bifur. Chaos, Vol. 17, No. 10, pp. 3373-3386, 2007. [30]S. K. Mazumder and K. Acharya, “Multiple Lyapunov Function Based Reaching Condition for Orbital Existence of Switching Power Converters,” IEEE Trans. on Power Electronics, Vol. 23, No. 3, pp. 1449-1471, 2008. [31]T. A. Johansen, “Computation of Lyapunov Functions for Smooth Nonlinear Systems Using Convex Optimization,” Automatica, Vol. 36, No. 11, pp. 1617-1626, 2000. [32]S. Almér, U. Jönsson, C.-Y. Kao, and J. Mari, “Stability Analysis of a Class of PWM Systems,” IEEE Trans. on Automatic Control, Vol. 52, No. 6, pp. 1072-1078, 2007. [33]L. Hou and Anthony N. Michel, “Stability Analysis of Pulse-Width-Modulated Feedback Systems,” Automatica, Vol. 37, No. 9, pp. 1335-1349, 2001. [34]S. K. Mazumderm A. H. Nayfeh, D. Boroyevich, “Theoretical and Experimental Investigation of the Fast- and Slow-Scale Instabilities of a DC-DC Converter,” IEEE Trans. on Power Electronics, Vol. 16, No. 2, pp. 201-216, 2001. [35]Y. Chen, C.-K. Tse, S.-C. Wong, and S.-S. Qiu, “Interaction of Fast-Scale and Slow-Scale Bifurcations in Current-Mode Controlled DC/DC Converters,” Int. J. Bifur. Chaos, Vol. 17, No. 5, pp. 1609-1622, 2007. [36]H. G. Schuster, Handbook of Chaos Control, Wiley-VCH, 1999. [37]G. Chen, Controlling Chaos and Bifurcations in Engineering System, CRC, 2000. [38]G. Poddar, K. Chakrabarty, and S. Banerjee, “Control of Chaos in DC-DC Converters,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 45, No. 6, pp. 672-676, 1998. [39]L.-Q. Wang, X.-Y. Wei, W.-G. Wen, and T. Xie, “OGY Control of the Chaotic Current Mode Buck-Boost Switching Converter,” Information and Control, Vol. 34, No. 6, pp. 742-746, 2005. [40]R. S. Bueno and J. L. R. Marrero, “Control of DC-DC Converters in the Chaotic Regime,” in Proceedings of the 1998 IEEE International Conference on Control Applications. [41]H. H. C. Iu and B. Robert, “Control of Chaos in a PWM Current-Mode H-Bridge Inverter Using Time-Delayed Feedback,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 50, No. 8, pp. 1125-1129, 2003. [42]C. Batlle, E. Fossas, and G. Olivar, “Stabilization of Periodic Orbits of the Buck Converter by Time-Delayed Feedback,” Int. J. Circ. Theor. Appl., Vol. 27, No. 6, pp. 617-631, 1999. [43]T. Hikihara, M. Konaka, and Y. Ueda, “Controlling Chaotic Chattering in Discontinuous Switching Mode of DC-DC Buck Converter,” IECON, 2000. [44]A. N. Natsheh, J. G. Kettleborough, and N. B. Janson, “Experimental Study of Controlling Chaos in a DC-DC Boost Converter,” Chaos, Solitons and Fractals, Vol., No., pp., 2007. [45]F. Angulo, J. E. Burgos, and G. Olivar, “Chaos Stabilization with TDAS and FPIC in Buck Converter Controlled by Lateral PWM and ZAD,” in Proceedings of the 2007 Mediterranean Conference on Control and Automation. [46]Y. Zhou, C.-K. Tse, S.-S. Qiu, and F. C. M. Lau, “Applying Resonant Parametric Perturbation to Control Chaos in the Buck DC/DC Converter with Phase Shift and Frequency Mismatch Coniderations,” Int. J. Bifur. Chaos, Vol. 13, No. 11, pp. 3459-3471, 2003. [47]D. Giaouris, A. Elbkosh, V. Pickert, B. Zahawi, and S. Banerjee, “Control of Period Doubling Bifurcations in DC-DC Converters,” in Proceedings of the 2006. Int. Control Conf.. [48]C. Ivan, A. Serbanescu, “Control Methods on Unstable Periodic Orbits of a Chaotic Dynamical System-Control Chaos in Buck Converter,” in Proceedings of the 2008 Optimization of International Conference on Electrical and Electronic Equipment. [49]Y. Zhou, H. H. C. Iu, C.-K. Tse, and J.-N. Chen, “Controlling Chaos in DC/DC Converters Using Optimal Resonant Parametric Perturbation,” in Proceedings of the 2005 IEEE International Symposium on Circuits and Systems. [50]B.-R. Lin and C.-C. Hua, “Buck/Boost Converter Control with Fuzzy Logic Approach,” in Proceedings of the 1993 International Conference on Industrial Electronics, Control, and Instrumentation. [51]K. Guesmi, N. Essounbouli, A. Hamzaoui, J. Zaytoon, N. Manamanni, “Shifting Nonlinear Phenomenon in a DC-DC Converter Using a Fuzzy Logic Controller,” Mathematics and Computers in Simulation, Vol. 76, No. 5-6, pp. 398-409, 2008. [52]H. Poincaré, Mémoire sur les courbes définies par une equation différentielle, J. Math Pures et Appl, 7(3), 375-422; (1882). 8, 251-296; (1885). 1(4), 167-244; (1886). 2, 151-217; all reprinted (1928). Oeuvre, Tome I. Paris: Gauthier-Villar. [53]C. Chicone, Ordinary Differential Equations with Applications, Springer, 2006. [54]T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, 1989. [55]R. Seydel, From Equilibrium to Chaos-Practical Bifurcation and Stability Analysis, Elsevier, 1988. [56]H.-T. Yau, Chaotic Behavior Analysis and Control of Rotor-Oil Film Bearing System, Ph. D. Dissertation, National Cheng Kung University, 2000. [57]F. C, Moon, Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers, John Wiley & Sons, Inc., 1992. [58]J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991. [59]A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vasano, “Determining Lyapunov Exponents from a Time Series,” Physica 16D, 286-317. [60]G. Benettin, L. Galgani, A. Giogilli, and J. M. Strelcyn, “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them. Part 2: Numerical Application,” Meccanica 15, 21-30. [61]H. G. Schuster and W. Just, Deterministic Chaos: An Introduction, Wiley-VCH, 2005. [62]K. Falconer, Fractal Geometry, John Wiley & Sons, Chichester, England, 1990. [63]Mohan, Undeland, and Robbins, Power Electronics: Converters, Applications, and Design, Wiley, New York, 2003. [64]梁適安, 交換式電源供給器之理論與實務設計, 全華, 臺北市, 民國83年。 [65]C.-T. Chen, Linear System Theory and Design, Oxford University Press, Inc., 1999. [66]D. A. Neamen, Electronic Circuit Analysis and Design, The McGraw-Hill Companies, Inc., 2001 [67]Y.-P. Tian and X.Yu, “Stabilizing unstable periodic orbits of chaotic systems via an optimal principle,” Journal of the Franklin Institute, Vol. 337, No. 6, pp. 771-779, 2000. [68]Arnol’d, Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, 1992. [69]M.-Y. Cheng and C.-S. Lin, “Measurement of Robustness for Biped Locomotion Using Linearized Poincaré Map,” in Proceedings of the 1995 IEEE International Conference on Systems, Man, and Cybernetics. [70]Y. Ma, T. Kousaka, C.-K. Tse, and H. Kawakami, “General Consideration for Modeling and Analyzing Switched Dynamical Systems,” in Proceedings of the 2004 International Symposium on Nonlinear Theory and Its Applications. [71]Y. Ma, H. Kawakami, C.-K. Tse, and T. Kousaka, “General Consideration for Modeling and Analyzing Switched Dynamical Systems,” Int. J. Bifur. Chaos, Vol. 16, No. 3, pp. 693-700, 2006. [72]A. E. Aroudi and R. Leyva, “Quasi-Periodic Route to Chaos in a PWM Voltage-Controlled DC-DC Boost Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 48, No. 8, pp. 967-978, 2001.
|