跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王振印
研究生(外文):Cheng-Yin Wang
論文名稱:以二氧化矽奈米粒子小球製作氮化鎵奈米柱發光二極體及其特性分析
論文名稱(外文):Fabrication and Analysis of GaN-based Nanorod Light Emitting Diodes
指導教授:黃建璋黃建璋引用關係
指導教授(外文):JianJang Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:61
中文關鍵詞:氮化鎵奈米柱發光二極體奈米粒子小球應力釋放
外文關鍵詞:GaNnanorodLEDnanoparticlesstrain relaxation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自90年代p型氮化鎵材料發展完備之後,氮化鎵目前為短波長發光二極體所廣泛應用的材料。發光二極體具有低耗電、使用壽命長、依賴性高、反應時間短等優點。儘管如此,在一些層面上面仍有許多發展空間,像是發光效率以及Quantum Confined Stark Effect所造成的波長漂移等議題。在本篇文章中介紹具有實用價值的奈米小球微影術方法來製作表面粗化氮化鎵發光二極體。由於發光二極體材料與空氣的折射係數差異極大,在發光二極體與空氣界面上易發生全反射,造成外部量子效應極低。目前解決的方式是在長晶過程當中額外生長粗糙層來降低全反射,不過這需要額外的時間及成本去完成。本篇文章中藉由旋塗及浸潤的方式,在發光二極體表面鋪排單層奈米粒子小球當作p-type GaN表面蝕刻遮罩,表面粗化發光二極體便可製作而成。相對於傳統發光二極體來說,無論是p-type GaN 或是ITO 表面粗化的發光二極體皆可展現具有相當程度的效能增加,且表面粗化製程不會影響到元件的電性特徵。這結果顯示奈米小球微影術提供一種不需額外增加製程的低成本方式製作高效能表面粗化發光二極體且此方法十分具有發展性。
波長漂移部分普遍的解決方式也是以在長晶過程中成長奈米結構去釋放材料中的應力。我們更進一步使用自組排列的奈米小球去製作自組性奈米柱結構氮化銦鎵/氮化鎵多重量子井發光二極體。有別於傳統長晶法,提供了另一種新方式在製程上解決波長漂移,也由於在奈米柱陣列製作並聯電極具有一定難度,僅有少數相關研究結果。奈米柱陣列由鋪排好的二氧化矽小球自然曝光,接著以乾蝕刻製程來完成。以一層SOG材料填充在奈米柱間的空隙來當作絕緣層,隔絕彼此平行的奈米柱二極體單元。電激發光螢光頻譜顯示奈米柱發光二極體的放光波長在注入電流範圍在25毫安培至100毫安培間幾乎是固定不動的。這顯示QCSE在奈米柱發光二極體元件上是被控制住的。此外,由拉曼頻譜分析及單晶X光繞射分析,我們可鑑別出,在此奈米結構中原本的晶格不匹配層會有一應力釋放的機制。
Since p-type GaN is well developed in 1990''s, GaN has been widely useded in short wavelength light emitting diodes. Light emitting diodes have advantages such as low power consumption, long life time, good reliability, short response time. Nevertheless, there are still some spaces to improve it like quantum efficiency, peak wavelength shift.
A practical approach to fabricate textured GaN-based light emitting diodes (LEDs) by nanosphere lithography is presented. Due to the refraction index difference between GaN and air, there will be a total reflection at this interface and low external quantum efficiency. The current resolution is growing a rough p-type layer on conventional light emitting diodes to reduce the total reflection, but it needs extra time and more cost to do it. By spin-coating a monolayer of SiO2 nanoparticles as the mask, textured LEDs can be fabricated. Both textured p-GaN and textured ITO LEDs show significant improvement over the conventional LEDs without damaging the electric characteristics. The results show that the method is promising for low-cost manufacturing high efficient GaN-based LEDs.
The solution for peak wavelength shift is usually treated by growth some nanostructure to release the strain in material. We further use this practical process to fabricate InGaN/GaN multiple quantum well (MQW) LEDs with a self-organized nanorod structure is demonstrated. Contrary to epitaxy, we provide a novel way in fabrication process to solve the peak wavelength shift. Also, because of the hardness of parallel metal evaporation on tips of nanorods without short circuit, there are only a few related results. The nanorod array is realized by using nature lithography of surface patterned silica spheres followed by dry etching. A layer of spin-on-glass (SOG), which intervening the rod spacing, serves the purpose of electric isolation to each of the parallel nanorod LED units. The electroluminescence (EL) peak wavelengths of the nanorod LEDs nearly remain as constant for an injection current level between 25mA and 100mA, which indicates that the quantum confined stark effect (QCSE) suppressed in the nanorod devices. Furthermore, from the Raman light scattering and x ray diffraction analysis we identify a strain relaxation mechanism for lattice mismatch layers in the nanostructure.
論文口試委員審定書
謝誌
摘要
Abstract
Chapter.1 Introduction………………………………………………1
1-1. Preface……………………………………………………………1
1-2. Motivation………………………………………………2 Reference…………………………………………………………………4
Chapter.2 Historical Review………………………………………………5
2-1. Nanostructure LEDs progress……………………………5
2-2. Nanorod fabrication……………………………………10
2-2-1. Bottom up growth………………………………10
2-2-2. Top down etching…………………………………14
2-3. Nanoparticles lithography………………………………………15
Reference……………………………………………………………17
Chapter.3 InGaN/GaN MQW Nanostructure LEDs Fabrication…………24
3-1. InGaN/GaN MQW LEDs sample structure…………….………24
3-2. Conventional LEDs lithography process…………………26
3-3. Surface textured InGaN/GaN MQW LEDs fabrication………29
3-4. InGaN/GaN MQW nanorod LEDs fabrication ………………31
Reference………………………………………………………36
Chapter.4 InGaN/GaN MQW Nanostructure LEDs Characteristic…37
4-1. Surface textured InGaN/GaN MQW LEDs characteristic……37
4-2. InGaN/GaN nanorod material characteristic (PL, XRD)………41
4-3. Different passivation layer InGaN/GaN nanorod LED device…48
4-3-1. SU-8 passivation layer (IV EL)………………………48
4-3-2. Spin on glass (SOG) passivation layer (IV EL)…………50
Reference……………………………………………………………57
Chapter.5 Conclusion and Recommendation for Future Work …………60
5-1. Conclusion……………………………………………………60
1. S.F. Chichibu, A.C. Abare, M.P. Mack, M.S. Minsky, T. Deguchi, D. Cohen, P. Kozodoy, S.B. Fleischer, S. Keller, J.S. Speck, J.E. Bowers, E. Hu, U.K. Mishra, L.A. Coldren, S.P. DenBaars, K. Wada, T. Sota, S. Nakamura, “Optical properties of InGaN quantum wells,” Materials Science and Engineering B59 (1999) 298–306
1.Wonseok Lee, Jae Limb, Jae-Hyun Ryou, Dongwon Yoo, Theodore Chung and Russell D. Dupuis, “Influence of growth temperature and growth rate of p-GaN layers on the characteristics of green light emitting diodes“, Journal of Electronic Materials, 35, n 4, 587-591 (2006).
2.C.H. Liu, R.W. Chuang, S.J. Chang, Y.K. Su, L.W. Wu and C.C. Lin, “Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface“, Materials Science and Engineering B, 112, issue 1, 10-13 (2004).
3.T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., 84, 855-857 (2004).
4.C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., 93, issue 11, 9383-9385 (2003).
5.H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface “, Nanotechnology, 16, 1844-1848 (2005).
6.S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts”, IEEE Photonics Technology Letters, 15, n 5, 649-651 (2003).
7.R. Horng, S. Huang, C. Yang, and D. Wuu, “Efficiency Improvement of Ga N-Based LEDs with ITO Texturing Window Layers Using Natural Lithography”, IEEE, Journal of selected topics in quantum electronics, 12, 1196-1201 (2006).
8.J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J.P. Liu, R.D. Dupuis, Z.H. Wu, A.M. Fischer, F.A. Ponce, "Control of quantum-confined Stark effect in InGaNGaN multiple quantum well active region by p -type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett., 92, n 10, 101113 (2008).
9.W. Lee, J. Limb, J-H. Ryou, D. Yoo, M.A. Ewing, Y. Korenblit, R.D. Dupuis, "Nitride-based green light emitting diodes with various p-type layers,” IEEE/OSA Journal of Display Technology, 3, n 2, 126-132 (2007).
10.C.F. Huang, C.Y. Chen, C.F. Lu, C.C. Yang, "Reduced injection current induced blueshift in an InGaNGaN quantum-well light-emitting diode of prestrained growth,” Appl. Phys. Lett., 91, n 5, 051121 (2007).
11.C.F. Huang, T.Y. Tang, J.J. Huang, W.Y. Shiao, C.C. Yang, C.W. Hsu, L.C. Chen, "Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett., 89, n 5, 051913 (2006).
12.W.Y. Shiao, C.F. Huang, T.Y. Tang, J.J. Huang, Y.C. Lu, C.Y. Chen, Y.S. Chen, C.C. Yang, "X-ray diffraction study on an InGaNGaN quantum-well structure of prestrained growth,” J. Appl. Phys., 101, n 11, 113503 (2007).
13.T.S. Ko, T.C. Wang, R.C. Gao, Y.J. Lee, T.C. Lu, H.C. Kuo, S.C. Wang, H.G. Chen, "InGaN/GaN nanostripe grown on pattern sapphire by metal organic chemical vapor deposition,” Appl. Phys. Lett., 90, n 1, 013110 (2007).
14.D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, R.H. Horng, Y.S. Yu, M.H. Pan, "Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electro. Soc., 153, n 8, G765-G770 (2006).
15.D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, S.Y. Huang, C.F. Lin, R.H. Horng, "Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett., 89, n 16, 161105 (2006).
16.E. Kuokstis, W.H. Sun, C.Q. Chen, J.W. Yang, M. Asif Khan, "Internal polarization fields in GaN/AlGaN multiple quantum wells with different crystallographic orientations,” J. Appl. Phys., 97, n 10, 103719 (2005).
17.M. Asif Khan, W.H. Sun, E. Kuokstis, M. Gaevski, J.P. Zhang, C.Q. Chen, H.M. Wang, J.W. Yang, G. Simin, R. Gaska, M.S. Shur, "Strong ultraviolet emission from non-polar AlGaN/GaN quantum wells grown over r-plane sapphire substrates,” Phys. Stat. Solid (A) Appl. Research, 200, n 1, 48-51 (2003).
18.H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, and C. T. Liang, "Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Optics Express, 15, n 15, 9357 (2007).
19.H.S. Chen, D.M. Yeh, Y.C. Lu, C.Y. Chen, C.F. Huang, T.Y. Tang, C.C. Yang, C.S. Wu and C.D. Chen, "Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology, 17, 1454–1458 (2006).
20.V. I. Klimov, A. A. Mikhailovsky, S. A. Xu, J. Malko, A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science, 290. n 5490, 314 – 317 (2000).
21.Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, N. Xu, B. Shen, R. Zhang, and Y. Chen, "Extended vapor–liquid–solid growth and field emission properties of aluminium nitride nanowires,” J. Mater. Chem., 13, 2024-2027 (2003).
22.C. C. Tang, S. S. Fan, M. L. Chapelle, and P. Li, "Silica-assisted catalytic growth of oxide and nitride nanowires,” Chem. Phys. Lett., 333, 12-15 (2001).
23.C.C. Chen, and C.C. Yeh, "Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater., 12, 738 – 741 (2000).
24.L.W. Tu, C.L. Hsiao, T.W. Chi, I. Lo, K.Y. Hsieh, "Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy," Appl. Phys. Lett., 82, n 10, 1601-1603 (2003).
25.H.W. Huang, C.C. Kao, T.H. Hsueh, C.C. Yu, C.F. Lin, J.T. Chu, H.C. Kuo, S.C. Wang, "Fabrication of GaN-based nanorod light emitting diodes using self-assemble nickel nano-mask and inductively coupled plasma reactive ion etching," Mater. Science and Engineering B: Solid-State Mater. for Adv. Tech., 113, n 2, 125-129 (2004).
26.C.H. Chiu, T.C. Lu, H.W. Huang, C.F. Lai, C.C. Kao, J.T. Chu, C.C. Yu, H.C. Kuo, S.C. Wang, C.F. Lin, T.H. Hsueh, "Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands," Nanotechnology, 18, n 44, 445201 (2007).
27.L.H. Peng, C.W. Chuang, L.H. Lou, "Piezoelectric effects in the optical properties of strained InGaN quantum wells," Appl. Phys. Lett., 74, n 6, 795-797 (1999).
28.H.W. Seo, Q.Y. Chen, M.N. Iliev, L.W. Tu, C.L. Hsiao, J.K. Mean, W.K. Chu, "Epitaxial GaN nanorods free from strain and luminescent defects", Appl. Phys. Lett., 88, n 15, 153124 (2006)
29.Y.S. Park, C.M. Park, H. Im, S.J. Lee, T.W. Kang, S.H. Lee, J.E. Oh, "Growth and optical properties on formation of self-assembled GaN nanorod grown on Si (111) substrates", 2005 5th IEEE Conference on Nanotechnology, 2, 2005 5th IEEE Conference on Nanotechnology, 687-690 (2005)
30.Deckman and J. H. Dunsmuir, “Applications of surface textures produced with natural lithography”, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1, no. 4, p 1109-1112 (1983).
31.M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, “Fabrication of nano-dot-and nano-ring-arrays by nanosphere lithography“, Appl. Phys. A, 63, no. 6, 617-619 (1996).
32.M.S. Gudiksen, “Semiconductor nanowires and nanowire heterostructures: development of complex building block for nanotechnology”, thesis in Chemistry, and Chemical Biology, Harvard U. (2002), Chap. 2.
33.S.R. Hejazi, H.R. Madaah Hosseini, M. Sasani Ghamsari, “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism”, Journal of Alloys and Compounds 455,353-357 (2008).
34.L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, K. Y. Hsieh, “Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy”, Appl. Phys. Lett., 82, n 10 (2003).
35.Y.S. Parka, S.H. Leeb, J.E. Ohb, C.M. Parkc, T.W. Kang, “Self-assembled GaNnano-rods grown directly on (1 1 1) Si substrates: Dependence on growth conditions”, Journal of Crystal Growth, 282, 313-319 (2005).
36.S. Y. Kuo, C. C. Kei, C. K. Chao, C. N. Hsiao, F. –I Lai, H. C. Kuo, W. F. Hsieh, S. C. Wang, “Catalyst-free GaN nanorods grown by metalorganic molecular beam epitaxy”, Proceedings of 2005 5th IEEE Conference on Nanotechnology, Nagoya, Japan, July 2005
37.P. Deb, H. Kim, V. Rawat, M. Oliver, S. Kim, M. Marshall, E. Stach, T. Sands, “Faceted and Vertically Aligned GaN Nanorod Arrays Fabricated without Catalysts or Lithography”, Nano Letters, 5, n 9, 1847-1851 (2005)
38.C.C. Yu, C.F. Chu, J.Y. Tsai, H. W. Huang, T.H. Hsueh, C.F. Lin, S.C. Wang,” Gallium Nitride Nanorods Fabricated by Inductively Coupled Plasma Reactive Ion Etching”, Jpn. J. Appl. Phys., 41, L910-L912 (2002).
39.T.H. Hsueh, H.W. Huang, C.C. Kao, Y.H. Chang, M.C. Ou-Yang, H.C. Kuo and S.C. Wang, “Characterization of InGaN/GaN Multiple Quantum Well Nanorods Fabricated by Plasma Etching with Self-Assembled Nickel Metal Nanomasks”, Jpn. J. Appl. Phys., 44, n 4B (2005)
40.C.H. Chiu, T.C. Lu, H.W. Huang, C.F. Lai, C.C. Kao, J.T. Chu, C.C. Yu, H.C. Kuo, S.C. Wang, C.F. Lin. T.H. Hsueh, ”Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands”, Nanotechnology, 18,445201 (2007)
1.Y. Lalatonne, J. Richardi, M.P. Pileni, "Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals", Nature Materials, 3, n 2, 121-125 (2004)
1.H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, C. D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts”, Nanotechnology, 17, 1454-1458 (2006).
2.C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure”, Appl. Phys. Lett., 88, 083121 (2006).
3.A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and Jr. R. F. Karlicek, “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures”, Appl. Phys. Lett., 70, 2790 (1997).
4.E. S. Jang, J. Y. Bae, J. Yoo, W. I. Park, D. W. Kim, G. C. Yi, T. Yatsui, and M. Ohtsu, “Quantum confinement effect in ZnO/Mg0.2Zn0.8O multishell nanorod heterostructures “, Appl. Phys. Lett., 88, 023102 (2006).
5.H. J. Choi, J. C. Johnson, R. He, S. K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-organized GaN quantum wire UV lasers “, J. Phys. Chem. B, 107, 8721-8723 (2003).
6.L. Malikova, F. H. Pollak and R. Bhat, “Composition and temperature dependence of the direct band gap of GaAs1−xNx (0≤x≤0.0232) using contactless electroreflectance”, J. Electron. Mater., 27, 484-487 (1998).
7.V. S. Harutyunyan, A. P. Aivazyan, E. R. Weber, Y. Kim, Y. Park and S. G. Subramanya, “High-resolution x-ray diffraction strain–stress analysis of GaN/sapphire heterostructures”, J. Phys. D: Appl. Phys., 34, A35–A39 (2001).
8.M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl and R. Stommer, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data”, J. Phys. D: Appl. Phys., 32, A56–A60 (1999).
9.N. Khan and J. Li, “Effects of compressive strain on optical properties of InxGa1-xN/GaN quantum wells”, Appl. Phys. Lett., 89, 151916 (2006).
10.M. C. Johnson, E. D. Bourret-Courchesne, J. Wu, Z. Liliental-Weber, and D. N. Zakharov, “Effect of gallium nitride template layer strain on the growth of InxGa1- xN/GaN multiple quantum well light emitting diodes”, J. Appl. Phys., 96, n 3 (2004).
11.K. Kusakabe and K. Ohkawa, “X-ray diffraction study of InGaN/GaN superlattice interfaces”, J. Vac. Sci. Technol. B, 21, n 4, 1839-1843 (2003).
12.T. M. Smeeton, M. J. Kappers, J. S. Barnard, M. E. Vickers, and C. J. Humphreys, “Analysis of InGaN/GaN single quantum wells by X-ray scattering and transmission electron microscopy”, phys. stat. sol. B, 240, n 2, 297-300 (2003).
13.C.H. Chiu, T.C. Lu, H.W. Huang, C.F. Lai, C.C. Kao, J.T. Chu, C.C. Yu, H.C. Kuo, S.C. Wang, C.F. Lin, T.H. Hsueh, "Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands," Nanotechnology, 18, n 44, 445201 (2007).
14.L.H. Peng, C.W. Chuang, L.H. Lou, "Piezoelectric effects in the optical properties of strained InGaN quantum wells," Appl. Phys. Lett., 74, n 6, 795-797 (1999).
15.H.S. Chen, D.M. Yeh, Y.C. Lu, C.Y. Chen, C.F. Huang, T.Y. Tang, C.C. Yang, C.S. Wu and C.D. Chen, "Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology, 17, 1454–1458 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊