跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 14:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱帆
研究生(外文):Yu-Fan Chen
論文名稱:分析端粒結合相關蛋白對端粒酶活性的影響
論文名稱(外文):Analyzing th effects of Saccharomyces cerevisiae telomere-associated proteins on telomerase activity
指導教授:林敬哲林敬哲引用關係
指導教授(外文):Jing-Jer Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:78
中文關鍵詞:端粒端粒酶單股端粒結合蛋白雙股端粒結合蛋白
外文關鍵詞:telomeretelomeraseCdc13pEst2pEst1pTlc1yKu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
端粒是真核染色體末端特化的由DNA以及蛋白組成的複合體,其功能參與在維持染色體的穩定性。在S. cerevisiae 中,端粒主要是由大約250-300 bp的 TG1-3/C1-3A雙股DNA 以及一段單股的TG1-3 DNA所組成,序列上具有重複性。端粒酶是真核細胞染色體末端複製時所需要的酵素,是一種ribonucleoprotein,在S. cerevisiae 中是由Tlc1 RNA 以及Est2p所組成,Est2p是具有反轉錄活性的蛋白質,Tlc1 RNA則是做為端粒酶複製時的模版,主要參與在端粒的複製以及長度維持。一些genetic證據顯示,端粒結合蛋白也會共同調控端粒酶的活性,例如Cdc13p、yKu複合體以及Est1p。Cdc13p是單股端粒DNA結合蛋白,並參與在端粒的保護以及端粒酶活性的調控上。雙股DNA末端結合蛋白yKu複合體是由yKu70和yKu80所組成,並且也會和Tlc1 RNA結合,同樣也參與在端粒長度的調控上。此外,Est1p是個會藉由和Cdc13p之間的互相作用而活化端粒酶的端粒相關蛋白。由於yKu複合體和Est1p的突變株都可以發現有端粒縮短的表現型,因此yKu複合體與Est1p可能在端粒長度的維持上扮演著正向的調控角色。為了進一步去分析這些端粒相關蛋白在分子機制上是如何去調控端粒酶的活性,因此,我們利用純化的Est2p/Tlc1 RNP複合體以及一個以端粒序列所設計模擬端粒結構的tailed-duplex DNA受質,已經在in vitro狀況下建立了偵測端粒酶活性的方法,以純化的端粒結合蛋白來分析其對端粒酶活性的調控。利用這樣in vitro的重建系統下,我們發現當Cdc13p或是yKu複合體結合至端粒上時,都會抑制端粒酶的活性,而Cdc13p所造成的端粒酶活性抑制是需要其端粒DNA結合能力。此外,Est1p可以回復Cdc13p對端粒酶活性所造成的抑制現象,顯示Est1p可能參與在活化端粒酶的活性。結合在in vivo genetic以及染色體免疫沈澱的實驗結果,可以提出一個在細胞週期的過程中,這些端粒結合蛋白如何去調控端粒酶活性的模型。
Telomeres are specialized protein-DNA structures at the physical ends of eukaryotic chromosomes. They are important for maintaining the stability of chromosomes. In yeast Saccharomyces cerevisiae, the telomere is composed of ~250-350 bp TG1-3/C1-3A double-stranded DNA and a single-stranded TG1-3 tail. Telomerase is a ribonucleoprotein involved in telomere replication and maintenance. Genetic evidence indicates that telomerase activity is regulated by telomere-associated protein factors, including Cdc13p, Ku proteins, and Est1p. Cdc13p is a single-stranded telomeric DNA binding protein that protects telomeres and regulates telomerase activity. Yeast Ku proteins, Yku70p and Yku80p, are the DNA end-binding proteins that bind telomere ends and telomerase Tlc1 RNA to regulate telomere length. Est1p is a telomerase-associated protein that activates telomerase through the interaction with Cdc13p. It appears that both Ku proteins and Est1p are positive regulators for telomere length maintenance as their mutations result in short telomeres. To elucidate the molecular mechanism of how these telomere-associated proteins affect telomerase activity, we established an in vitro telomerase analysis system using reconstituted telomerase core components, the template Tlc1 RNA and the catalytic subunit of Est2p. We have also synthesized a tailed-duplex DNA substrate made by telomeric DNA sequences to mimic telomere structure. Regulation of telomerase activity was then analyzed by adding the purified telomere-associated proteins. Using the in vitro reconstituted system, we found that binding of Cdc13p and/or Ku proteins to telomeres inhibited telomerase activity. The telomeric DNA binding activity of Cdc13p is required for its inhibition activity. Significantly, we found that Est1p was capable of re-activating the Cdc13p-inhibited telomerase activity, indicating a direct role of Est1p in activating telomerase activity. By combining the in vivo genetic and chromatin-immunoprecipitation results, a model for how telomere-associated proteins affect telomerase activity during cell cycle progression is proposed.
目 錄 1
圖表目錄 2
縮 寫 表 5
中文摘要 7
英文摘要 8
導 論 10
材料方法 17
實驗結果 28
討 論 38
參考資料 43
附 圖 49
Adams, A.K. and Holm, C. (1996) Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. Mol Cell Biol, 16, 4614-4620.
Anderson, E.M., Halsey, W.A. and Wuttke, D.S. (2002) Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13. Nucleic Acids Res, 30, 4305-4313.
Aparicio, O.M., Billington, B.L. and Gottschling, D.E. (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell, 66, 1279-1287.
Barrientos, K.S., Kendellen, M.F., Freibaum, B.D., Armbruster, B.N., Etheridge, K.T. and Counter, C.M. (2008) Distinct functions of POT1 at telomeres. Mol Cell Biol.
Beernink, H.T., Miller, K., Deshpande, A., Bucher, P. and Cooper, J.P. (2003) Telomere maintenance in fission yeast requires an Est1 ortholog. Curr Biol, 13, 575-580.
Blackburn, E.H. (1990) Telomeres: structure and synthesis. J Biol Chem, 265, 5919-5921.
Boulton, S.J. and Jackson, S.P. (1996) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res, 24, 4639-4648.
Chandra, A., Hughes, T.R., Nugent, C.I. and Lundblad, V. (2001) Cdc13 both positively and negatively regulates telomere replication. Genes Dev, 15, 404-414.
Conrad, M.N., Wright, J.H., Wolf, A.J. and Zakian, V.A. (1990) RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell, 63, 739-750.
Counter, C.M., Meyerson, M., Eaton, E.N. and Weinberg, R.A. (1997) The catalytic subunit of yeast telomerase. Proc Natl Acad Sci U S A, 94, 9202-9207.
Evans, S.K. and Lundblad, V. (1999) Est1 and Cdc13 as comediators of telomerase access. Science, 286, 117-120.
Feldmann, H. and Winnacker, E.L. (1993) A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem, 268, 12895-12900.
Fisher, T.S., Taggart, A.K. and Zakian, V.A. (2004) Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol, 11, 1198-1205.
Gao, H., Cervantes, R.B., Mandell, E.K., Otero, J.H. and Lundblad, V. (2007) RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol, 14, 208-214.
Garvik, B., Carson, M. and Hartwell, L. (1995) Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol, 15, 6128-6138.
Gottschling, D.E., Aparicio, O.M., Billington, B.L. and Zakian, V.A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell, 63, 751-762.
Grandin, N., Damon, C. and Charbonneau, M. (2000) Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol Cell Biol, 20, 8397-8408.
Grandin, N., Damon, C. and Charbonneau, M. (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. Embo J, 20, 1173-1183.
Grandin, N., Reed, S.I. and Charbonneau, M. (1997) Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev, 11, 512-527.
Greider, C.W. and Blackburn, E.H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 43, 405-413.
Hardy, C.F., Sussel, L. and Shore, D. (1992) A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev, 6, 801-814.
Hartwell, L.H., Culotti, J. and Reid, B. (1970) Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci U S A, 66, 352-359.
Hsu, C.L., Chen, Y.S., Tsai, S.Y., Tu, P.J., Wang, M.J. and Lin, J.J. (2004) Interaction of Saccharomyces Cdc13p with Pol1p, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control. Nucleic Acids Res, 32, 511-521.
Hughes, T.R., Weilbaecher, R.G., Walterscheid, M. and Lundblad, V. (2000) Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc Natl Acad Sci U S A, 97, 6457-6462.
Kyrion, G., Boakye, K.A. and Lustig, A.J. (1992) C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol Cell Biol, 12, 5159-5173.
Larrivee, M., LeBel, C. and Wellinger, R.J. (2004) The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev, 18, 1391-1396.
Lei, M., Zaug, A.J., Podell, E.R. and Cech, T.R. (2005) Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem, 280, 20449-20456.
Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B. and Lundblad, V. (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics, 144, 1399-1412.
Liao, X.H., Zhang, M.L., Yang, C.P., Xu, L.X. and Zhou, J.Q. (2005) Characterization of recombinant Saccharomyces cerevisiae telomerase core enzyme purified from yeast. Biochem J, 390, 169-176.
Lin, J.J. and Zakian, V.A. (1996) The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A, 93, 13760-13765.
Lin, Y.C., Hsu, C.L., Shih, J.W. and Lin, J.J. (2001) Specific binding of single-stranded telomeric DNA by Cdc13p of Saccharomyces cerevisiae. J Biol Chem, 276, 24588-24593.
Lingner, J., Cech, T.R., Hughes, T.R. and Lundblad, V. (1997a) Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci U S A, 94, 11190-11195.
Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V. and Cech, T.R. (1997b) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science, 276, 561-567.
Livengood, A.J., Zaug, A.J. and Cech, T.R. (2002) Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol Cell Biol, 22, 2366-2374.
Lue, N.F., Bosoy, D., Moriarty, T.J., Autexier, C., Altman, B. and Leng, S. (2005) Telomerase can act as a template- and RNA-independent terminal transferase. Proc Natl Acad Sci U S A, 102, 9778-9783.
Lundblad, V. (2003) Telomere replication: an Est fest. Curr Biol, 13, R439-441.
Lundblad, V. and Szostak, J.W. (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell, 57, 633-643.
Lydall, D. and Weinert, T. (1997) Use of cdc13-1-induced DNA damage to study effects of checkpoint genes on DNA damage processing. Methods Enzymol, 283, 410-424.
Milne, G.T., Jin, S., Shannon, K.B. and Weaver, D.T. (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol, 16, 4189-4198.
Mimori, T., Akizuki, M., Yamagata, H., Inada, S., Yoshida, S. and Homma, M. (1981) Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest, 68, 611-620.
Moretti, P., Freeman, K., Coodly, L. and Shore, D. (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev, 8, 2257-2269.
Nugent, C.I., Hughes, T.R., Lue, N.F. and Lundblad, V. (1996) Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science, 274, 249-252.
Olovnikov, A.M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol, 41, 181-190.
Ono, Y., Tomita, K., Matsuura, A., Nakagawa, T., Masukata, H., Uritani, M., Ushimaru, T. and Ueno, M. (2003) A novel allele of fission yeast rad11 that causes defects in DNA repair and telomere length regulation. Nucleic Acids Res, 31, 7141-7149.
Pennock, E., Buckley, K. and Lundblad, V. (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell, 104, 387-396.
Porter, S.E., Greenwell, P.W., Ritchie, K.B. and Petes, T.D. (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res, 24, 582-585.
Prescott, J. and Blackburn, E.H. (1997) Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev, 11, 2790-2800.
Qi, H. and Zakian, V.A. (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev, 14, 1777-1788.
Reichenbach, P., Hoss, M., Azzalin, C.M., Nabholz, M., Bucher, P. and Lingner, J. (2003) A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr Biol, 13, 568-574.
Sandell, L.L. and Zakian, V.A. (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell, 75, 729-739.
Schramke, V., Luciano, P., Brevet, V., Guillot, S., Corda, Y., Longhese, M.P., Gilson, E. and Geli, V. (2004) RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat Genet, 36, 46-54.
Shampay, J., Szostak, J.W. and Blackburn, E.H. (1984) DNA sequences of telomeres maintained in yeast. Nature, 310, 154-157.
Singer, M.S. and Gottschling, D.E. (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science, 266, 404-409.
Singh, S.M., Steinberg-Neifach, O., Mian, I.S. and Lue, N.F. (2002) Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot Cell, 1, 967-977.
Smith, J., Zou, H. and Rothstein, R. (2000) Characterization of genetic interactions with RFA1: the role of RPA in DNA replication and telomere maintenance. Biochimie, 82, 71-78.
Snow, B.E., Erdmann, N., Cruickshank, J., Goldman, H., Gill, R.M., Robinson, M.O. and Harrington, L. (2003) Functional conservation of the telomerase protein Est1p in humans. Curr Biol, 13, 698-704.
Steiner, B.R., Hidaka, K. and Futcher, B. (1996) Association of the Est1 protein with telomerase activity in yeast. Proc Natl Acad Sci U S A, 93, 2817-2821.
Stellwagen, A.E., Haimberger, Z.W., Veatch, J.R. and Gottschling, D.E. (2003) Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev, 17, 2384-2395.
Taggart, A.K., Teng, S.C. and Zakian, V.A. (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science, 297, 1023-1026.
Taggart, A.K. and Zakian, V.A. (2003) Telomerase: what are the Est proteins doing? Curr Opin Cell Biol, 15, 275-280.
Tsukamoto, Y., Kato, J. and Ikeda, H. (1997) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature, 388, 900-903.
Virta-Pearlman, V., Morris, D.K. and Lundblad, V. (1996) Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev, 10, 3094-3104.
Wang, M.J., Lin, Y.C., Pang, T.L., Lee, J.M., Chou, C.C. and Lin, J.J. (2000) Telomere-binding and Stn1p-interacting activities are required for the essential function of Saccharomyces cerevisiae Cdc13p. Nucleic Acids Res, 28, 4733-4741.
Watson, J.D. (1972) Origin of concatemeric T7 DNA. Nat New Biol, 239, 197-201.
Wellinger, R.J., Wolf, A.J. and Zakian, V.A. (1993) Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell, 72, 51-60.
Wotton, D. and Shore, D. (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev, 11, 748-760.
Zakian, V.A. (1995) Telomeres: beginning to understand the end. Science, 270, 1601-1607.
Zhou, J., Hidaka, K. and Futcher, B. (2000) The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol Cell Biol, 20, 1947-1955.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊