|
[1]E. M. Shahid and Y. Jamal, Production of biodiesel: A technical review, Renewable and Sustainable Energy Reviews, vol. 15, pp. 4732-4745, 2011. [2]U. S. Energy Information Administration, International energy outlook 2013, 2013. [3]A. L. Ahmad, N. H. M. Yasin, C. J. C. Derek, and J. K. Lim, Microalgae as a sustainable energy source for biodiesel production: A review, Renewable and Sustainable Energy Reviews, vol. 15, pp. 584-593, 2011. [4]G. Kafuku and M. Mbarawa, Biodiesel production from Croton megalocarpus oil and its process optimization, Fuel, vol. 89, pp. 2556-2560, 2010. [5]Y. C. Sharma and B. Singh, Development of biodiesel: Current scenario, Renewable and Sustainable Energy Reviews, vol. 13, pp. 1646-1651, 2009. [6]A. S. Silitonga, A. E. Atabani, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, and S. Mekhilef, A review on prospect of Jatropha curcas for biodiesel in Indonesia, Renewable and Sustainable Energy Reviews, vol. 15, pp. 3733-3756, 2011. [7]J. Hwang, D. Qi, Y. Jung, and C. Bae, Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel, Renewable Energy, vol. 63, pp. 9-17, 2014. [8]K. Muralidharan and D. Vasudevan, Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends, Applied Energy, vol. 88, pp. 3959-3968, 2011. [9]R. Sathish Kumar, K. Sureshkumar, and R. Velraj, Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method, Fuel, vol. 140, pp. 90-96, 2015. [10]G. Vicente, M. Martı́nez, and J. Aracil, Integrated biodiesel production: a comparison of different homogeneous catalysts systems, Bioresource Technology, vol. 92, pp. 297-305, 2004. [11]V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng, and N. Nirmalakhandan, Microwave energy potential for biodiesel production, Sustainable Chemical Processes, vol. 1, p. 5, 2013. [12]A. Refaat, N. Attia, H. Sibak, S. El Sheltawy, and G. El Diwani, Production optimization and quality assessment of biodiesel from waste vegetable oil, International Journal of Environmental Science & Technology, vol. 5, pp. 75-82, 2008. [13]F. Chai, F. Cao, F. Zhai, Y. Chen, X. Wang, and Z. Su, Transesterification of Vegetable Oil to Biodiesel using a Heteropolyacid Solid Catalyst, Advanced Synthesis & Catalysis, vol. 349, pp. 1057-1065, 2007. [14]A. Demirbas, Biodiesel from sunflower oil in supercritical methanol with calcium oxide, Energy Conversion and Management, vol. 48, pp. 937-941, 2007. [15]N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, and T. Yonemoto, Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst, Bioresource Technology, vol. 98, pp. 416-421, 2007. [16]P. Patil, V. G. Gude, S. Pinappu, and S. Deng, Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions, Chemical Engineering Journal, vol. 168, pp. 1296-1300, 2011. [17]S. Yan, H. Lu, and B. Liang, Supported CaO Catalysts Used in the Transesterification of Rapeseed Oil for the Purpose of Biodiesel Production, Energy & Fuels, vol. 22, pp. 646-651, 2007. [18]J. Hernando, P. Leton, M. P. Matia, J. L. Novella, and J. Alvarez-Builla, Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes, Fuel, vol. 86, pp. 1641-1644, 2007. [19]A. A. Refaat, S. T. El Sheltawy, and K. U. Sadek, Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation, International Journal of Environmental Science & Technology, vol. 5, pp. 315-322, 2008. [20]A. D’Cruz, M. Kulkarni, L. Meher, and A. Dalai, Synthesis of Biodiesel from Canola Oil Using Heterogeneous Base Catalyst, Journal of the American Oil Chemists' Society, vol. 84, pp. 937-943, 2007. [21]E. L. Dall'Oglio, P. T. d. Sousa Jr, P. T. d. J. Oliveira, L. G. d. Vasconcelos, C. A. Parizotto, and C. A. Kuhnen, Use of heterogeneous catalysts in methylic biodiesel production induced by microwave irradiation, Química Nova, vol. 37, pp. 411-417, 2014. [22]A. A. Refaat, Biodiesel production using solid metal oxide catalysts, International Journal of Environmental Science & Technology, vol. 8, pp. 203-221, 2011. [23]X. Liu, H. He, Y. Wang, and S. Zhu, Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst, Catalysis Communications, vol. 8, pp. 1107-1111, 2007. [24]L. M. G. d. Carvalho, W. C. d. Abreu, M. d. G. d. O. e. Silva, J. R. d. O. Lima, J. E. d. Oliveira, J. M. E. d. Matos, et al., Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends, Journal of the Brazilian Chemical Society, vol. 24, pp. 550-557, 2013. [25]K. Faungnawakij, B. Yoosuk, S. Namuangruk, P. Krasae, N. Viriya-Empikul, and B. Puttasawat, Sr–Mg Mixed Oxides as Biodiesel Production Catalysts, ChemCatChem, vol. 4, pp. 209-216, 2012. [26]M. Koberg, R. Abu-Much, and A. Gedanken, Optimization of bio-diesel production from soybean and wastes of cooked oil: Combining dielectric microwave irradiation and a SrO catalyst, Bioresource Technology, vol. 102, pp. 1073-1078, 2011. [27]N. E. Leadbeater and L. M. Stencel, Fast, Easy Preparation of Biodiesel Using Microwave Heating, Energy & Fuels, vol. 20, pp. 2281-2283, 2006. [28]J. Janaun and N. Ellis, Perspectives on biodiesel as a sustainable fuel, Renewable and Sustainable Energy Reviews, vol. 14, pp. 1312-1320, 2010. [29]M. Pugazhvadivu and K. Jeyachandran, Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel, Renewable Energy, vol. 30, pp. 2189-2202, 2005. [30]M. Satyanarayana and C. Muraleedharan, Comparative Studies of Biodiesel Production from Rubber Seed Oil, Coconut Oil, and Palm Oil Including Thermogravimetric Analysis, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 33, pp. 925-937, 2011. [31]G. College, The Chemistry of Biodiesel - Differences Between Biodiesel, Diesel and Vegetable Oil, ed. Indiana, USA. [32]B. Freedman, E. H. Pryde, and T. L. Mounts, Variables affecting the yields of fatty esters from transesterified vegetable oils, Journal of the American Oil Chemists' Society, vol. 61, pp. 1638-1643, 1984. [33]S. P. Joan Tarud, Technoeconomic comparison of biofuels: ethanol, methanol, and gasoline from gasification of woody residues, in American Chemical Society, USA, 2011. [34]A. Demirbas, Progress and recent trends in biodiesel fuels, Energy Conversion and Management, vol. 50, pp. 14-34, 2009. [35]M. A. Fazal, A. S. M. A. Haseeb, and H. H. Masjuki, Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability, Renewable and Sustainable Energy Reviews, vol. 15, pp. 1314-1324, 2011. [36]D. Y. C. Leung, X. Wu, and M. K. H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy, vol. 87, pp. 1083-1095, 2010. [37]C. Adams, J. F. Peters, M. C. Rand, B. J. Schroer, and M. C. Ziemke, Investigation of soybean oil as a diesel fuel extender: Endurance tests, Journal of the American Oil Chemists’ Society, vol. 60, pp. 1574-1579, 1983. [38]A. Schwab, M. Bagby, and B. Freedman, Preparation and properties of diesel fuels from vegetable oils, Fuel, vol. 66, pp. 1372-1378, 1987. [39]C.-C. Chang and S.-W. Wan, China's Motor Fuels from Tung Oil, Industrial & Engineering Chemistry, vol. 39, pp. 1543-1548, 1947. [40]F. Ma and M. A. Hanna, Biodiesel production: a review, Bioresource Technology, vol. 70, pp. 1-15, 1999. [41]T. Issariyakul, M. G. Kulkarni, L. C. Meher, A. K. Dalai, and N. N. Bakhshi, Biodiesel production from mixtures of canola oil and used cooking oil, Chemical Engineering Journal, vol. 140, pp. 77-85, 2008. [42]J. Kansedo, K. T. Lee, and S. Bhatia, Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production, Fuel, vol. 88, pp. 1148-1150, 2009. [43]C. Kaya, C. Hamamci, A. Baysal, O. Akba, S. Erdogan, and A. Saydut, Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production, Renewable Energy, vol. 34, pp. 1257-1260, 2009. [44]A. Kumar Tiwari, A. Kumar, and H. Raheman, Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process, Biomass and Bioenergy, vol. 31, pp. 569-575, 2007. [45]Y. Rao, B. Xiang, X. Zhou, Z. Wang, S. Xie, and J. Xu, Quantitative and qualitative determination of acid value of peanut oil using near-infrared spectrometry, Journal of Food Engineering, vol. 93, pp. 249-252, 2009. [46]P. K. Sahoo and L. M. Das, Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils, Fuel, vol. 88, pp. 1588-1594, 2009. [47]J. Zubr, Oil-seed crop: Camelina sativa, Industrial Crops and Products, vol. 6, pp. 113-119, 1997. [48]J. San José Alonso, J. A. López Sastre, C. Romero-Ávila, and E. López, A note on the combustion of blends of diesel and soya, sunflower and rapeseed vegetable oils in a light boiler, Biomass and Bioenergy, vol. 32, pp. 880-886, 2008. [49]F. F. P. Santos, J. Q. Malveira, M. G. A. Cruz, and F. A. N. Fernandes, Production of biodiesel by ultrasound assisted esterification of Oreochromis niloticus oil, Fuel, vol. 89, pp. 275-279, 2010. [50]S. Saraf and B. Thomas, Influence of Feedstock and Process Chemistry on Biodiesel Quality, Process Safety and Environmental Protection, vol. 85, pp. 360-364, 2007. [51]S. P. Singh and D. Singh, Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review, Renewable and Sustainable Energy Reviews, vol. 14, pp. 200-216, 2010. [52]A. Srivastava and R. Prasad, Triglycerides-based diesel fuels, Renewable and Sustainable Energy Reviews, vol. 4, pp. 111-133, 2000. [53]P. Winayanuwattikun, C. Kaewpiboon, K. Piriyakananon, S. Tantong, W. Thakernkarnkit, W. Chulalaksananukul, et al., Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand, Biomass and Bioenergy, vol. 32, pp. 1279-1286, 2008. [54]J. W. Goodrum, D. P. Geller, and T. T. Adams, Rheological characterization of animal fats and their mixtures with #2 fuel oil, Biomass and Bioenergy, vol. 24, pp. 249-256, 2003. [55]P. Schinas, G. Karavalakis, C. Davaris, G. Anastopoulos, D. Karonis, F. Zannikos, et al., Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece, Biomass and Bioenergy, vol. 33, pp. 44-49, 2009. [56]S. L. Dmytryshyn, A. K. Dalai, S. T. Chaudhari, H. K. Mishra, and M. J. Reaney, Synthesis and characterization of vegetable oil derived esters: evaluation for their diesel additive properties, Bioresource Technology, vol. 92, pp. 55-64, 2004. [57]S. A. El Sherbiny, A. A. Refaat, and S. T. El Sheltawy, Production of biodiesel using the microwave technique, Journal of Advanced Research, vol. 1, pp. 309-314, 2010. [58]H. Fukuda, A. Kondo, and H. Noda, Biodiesel fuel production by transesterification of oils, Journal of Bioscience and Bioengineering, vol. 92, pp. 405-416, 2001. [59]U. Rashid and F. Anwar, Production of Biodiesel through Base-Catalyzed Transesterification of Safflower Oil Using an Optimized Protocol, Energy & Fuels, vol. 22, pp. 1306-1312, 2008. [60]J. Sun, J. Ju, L. Ji, L. Zhang, and N. Xu, Synthesis of Biodiesel in Capillary Microreactors, Industrial & Engineering Chemistry Research, vol. 47, pp. 1398-1403, 2008. [61]F.-X. Yang, Y.-Q. Su, X.-H. Li, Q. Zhang, and R.-C. Sun, Studies on the Preparation of Biodiesel from Zanthoxylum bungeanum Maxim Seed Oil, Journal of Agricultural and Food Chemistry, vol. 56, pp. 7891-7896, 2008. [62]M. Di Serio, M. Cozzolino, M. Giordano, R. Tesser, P. Patrono, and E. Santacesaria, From Homogeneous to Heterogeneous Catalysts in Biodiesel Production, Industrial & Engineering Chemistry Research, vol. 46, pp. 6379-6384, 2007. [63]M. M. R. Talukder, J. C. Wu, S. K. Lau, L. C. Cui, G. Shimin, and A. Lim, Comparison of Novozym 435 and Amberlyst 15 as Heterogeneous Catalyst for Production of Biodiesel from Palm Fatty Acid Distillate, Energy & Fuels, vol. 23, pp. 1-4, 2008. [64]L. Bournay, D. Casanave, B. Delfort, G. Hillion, and J. A. Chodorge, New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants, Catalysis Today, vol. 106, pp. 190-192, 2005. [65]A. Singh, B. He, J. Thompson, and J. Van Gerpen, Process optimization of biodiesel production using alkaline catalysts, Applied Engineering in Agriculture, vol. 22, pp. 597-600, 2006. [66]E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin, Synthesis of Biodiesel via Acid Catalysis, Industrial & Engineering Chemistry Research, vol. 44, pp. 5353-5363, 2005. [67]A. Sivasamy, K. Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev, and S. Miertus, Catalytic Applications in the Production of Biodiesel from Vegetable Oils, ChemSusChem, vol. 2, pp. 278-300, 2009. [68]C. C. Akoh, S.-W. Chang, G.-C. Lee, and J.-F. Shaw, Enzymatic Approach to Biodiesel Production, Journal of Agricultural and Food Chemistry, vol. 55, pp. 8995-9005, 2007. [69]J. M. Cerveró, J. Coca, and S. Luque, Production of biodiesel from vegetable oils, Grasas y aceites, vol. 59, pp. 76-83, 2008. [70]L. C. Meher, D. Vidya Sagar, and S. N. Naik, Technical aspects of biodiesel production by transesterification—a review, Renewable and Sustainable Energy Reviews, vol. 10, pp. 248-268, 2006. [71]C. Fang and P. Lai, Microwave heating and separation of water-in-oil emulsions, Journal of microwave power and electromagnetic energy, vol. 30, pp. 46-57, 1995. [72]A. Zlotorzynski, The Application of Microwave Radiation to Analytical and Environmental Chemistry, Critical Reviews in Analytical Chemistry, vol. 25, pp. 43-76, 1995. [73]C. O. Kappe, Controlled Microwave Heating in Modern Organic Synthesis, Angewandte Chemie International Edition, vol. 43, pp. 6250-6284, 2004. [74]N. Kuhnert, Microwave-Assisted Reactions in Organic Synthesis—Are There Any Nonthermal Microwave Effects?, Angewandte Chemie International Edition, vol. 41, pp. 1863-1866, 2002. [75]F. Chemat and E. Esveld, Microwave Super-Heated Boiling of Organic Liquids: Origin, Effect and Application, Chemical Engineering & Technology, vol. 24, pp. 735-744, 2001. [76]C. Shibata, T. Kashima, and K. Ohuchi, Nonthermal influence of microwave power on chemical reactions, Japanese journal of applied physics, vol. 35, p. 316, 1996. [77]D. Dallinger and C. O. Kappe, Microwave-assisted synthesis in water as solvent, Chemical reviews, vol. 107, pp. 2563-2591, 2007. [78]A. Demirbaş, Biodiesel from vegetable oils via transesterification in supercritical methanol, Energy Conversion and Management, vol. 43, pp. 2349-2356, 2002. [79]F. Wiesbrock, R. Hoogenboom, and U. S. Schubert, Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives, Macromolecular Rapid Communications, vol. 25, pp. 1739-1764, 2004. [80]Y. Groisman and A. Gedanken, Continuous Flow, Circulating Microwave System and Its Application in Nanoparticle Fabrication and Biodiesel Synthesis, The Journal of Physical Chemistry C, vol. 112, pp. 8802-8808, 2008. [81]L. Perreux and A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations, Tetrahedron, vol. 57, pp. 9199-9223, 2001. [82]C. Oliver Kappe, Microwave dielectric heating in synthetic organic chemistry, Chemical Society Reviews, vol. 37, pp. 1127-1139, 2008. [83]A. Demirbas, Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods, Progress in Energy and Combustion Science, vol. 31, pp. 466-487, 2005. [84]P. Lidström, J. Tierney, B. Wathey, and J. Westman, Microwave assisted organic synthesis—a review, Tetrahedron, vol. 57, pp. 9225-9283, 2001. [85]J. M. N. van Kasteren and A. P. Nisworo, A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification, Resources, Conservation and Recycling, vol. 50, pp. 442-458, 2007.
|