跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃淑琳
研究生(外文):Shu-Lin Huang
論文名稱:上升二氧化碳對馴化與野生植物及昆蟲生長表現之影響
論文名稱(外文):Effect of Elevated CO2 on Domesticated and Wild Plants and Insect Herbivores Performance
指導教授:黃紹毅黃紹毅引用關係
指導教授(外文):Shaw-Yhi Hwang
口試委員:莊益源何傳愷
口試委員(外文):Yi-Yu ChuangChuan-Kai Ho
口試日期:2016-06-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:昆蟲學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:上升二氧化碳植物馴化專食性昆蟲廣食性昆蟲
外文關鍵詞:elevated carbon dioxidecrop domesticationspecialistgeneralist
相關次數:
  • 被引用被引用:0
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
氣候變遷和溫室效應息息相關,而二氧化碳被視為是造成溫度上升最主要的溫室氣體。儘管已有許多相關研究試驗二氧化碳濃度上升對植物及植食昆蟲的影響,但大部分建立在以木本植物為主的森林生態系及栽培作物為主的農業生態系統,較少文獻著墨於自然生態系統中的雜草上。作物馴化是一個人工選育的過程,透過人工選育,栽培作物的性狀和化學防禦物質已和其野生近緣種相差甚遠,這也可能進而影響植食昆蟲的生長表現。因此本試驗探討二氧化碳濃度上升對十字花科栽培作物 - 花椰菜(Brassica oleracea var. botrytis L)、野生雜草 - 小葶藶(Rorippa dubia Hara)生長表現的影響。另外,為了更瞭解二氧化碳對植食昆蟲的影響機制,因而試驗二氧化碳的直接與間接影響對專食性昆蟲 - 日本紋白蝶(Pieris rapae crucivora Boisduval)與廣食性昆蟲 - 斜紋夜蛾(Spodoptera litura Fabricius)的生長表現。結果發現二氧化碳濃度上升可以促進植物的生長表現,且對小葶藶的營養成分及化學物質有影響。另一方面,二氧化碳濃度上升對紋白蝶生長表現沒有影響。研究也發現二氧化碳濃度上升及植物馴化明顯對斜紋夜蛾生長表現的影響較大,此結果意味著比起專食性昆蟲而言,未來二氧化碳濃度上升,抑或是植物馴化,將對於廣食性昆蟲有較為顯著的影響。

Climate change refers to greenhouse effect, and carbon dioxide (CO2) is regarded as a main greenhouse gas that results in an increase of involving elevated global temperature. Previous studies have evaluated the effect of elevated CO2 on insect – plant interaction, but focused mainly on woody and cultivated crop plants. Little is known about the effects of elevated CO2 on wild plants. Crop domestication is a process of artificial selection, through that, the plant traits and allelochemistry of crop plants varied from wild relatives and thus may dramatically affect the plant-insect interactions. In present study, we examined the effect of elevated CO2 on Brassicaceae cultivated plant (Brassica oleracea var. botrytis L) and wild plant (Rorippa dubia Hara). In addition, to further understand CO2 effects on herbivores, we examined the direct and indirect impact of CO2 on specialist (Pieris rapae crucivora Boisduval) and generalist (Spodoptera litura Fabricius) herbivores performance. The results reveal that elevated CO2 enhanced plant performance and had influence on their nutrients and allelochemistry of wild plant, but not on cultivated plant. In addition, specialist herbivore was not affected by CO2 amount. These results suggest that elevated CO2 and crop domestication are apparently more effective to impact on generalist herbivores. Therefore, in the future elevated carbon dioxide environment, weedy plants might have more effects on the generalist herbivores.

摘要....i
英文摘要....ii
目錄....iii
圖表目錄....iv
附錄....v
前言....1
前人研究....4
材料方法....11
結果....20
討論....23
參考文獻....30
圖一、不同二氧化碳濃度對花椰菜生長表現之影響 (A)地上部溼重;(B)地上部乾重..............................................47
圖二、不同二氧化碳濃度對小葶藶生長表現之影響 (A)地上部溼重;(B)地上部乾重;(C)葉面積....................................48
圖三、不同二氧化碳處理對花椰菜葉片(A)非結構性碳水化合物含量、(B)氮含量及(C)碳氮比之影響...............................49
圖四、不同二氧化碳處理對小葶藶葉片(A)非結構性碳水化合物含量、(B)氮含量及(C)碳氮比之影響...............................50
圖五、不同二氧化碳處理對花椰菜葉片總酚類含量之影響..........51
圖六、不同二氧化碳處理對小葶藶葉片(A)總酚類含量、(B)黑芥子苷含量之影響...............................................52
圖七、二氧化碳之直接影響:紋白蝶幼蟲於不同二氧化碳濃度的溫室中,並餵飼生長於控制組的花椰菜葉片後,紋白蝶幼蟲之生長速率......53
圖八、(A)二氧化碳之間接影響:餵飼紋白蝶幼蟲不同二氧化碳處理花椰菜(作物)及小葶藶(雜草)葉片後,紋白蝶幼蟲之生長速率;(B)二氧化碳與植物之交互作用影響:紋白蝶幼蟲於不同二氧化碳濃度的溫室中,餵飼不同二氧化碳處理的花椰菜及小葶藶植株後,紋白蝶幼蟲之生長速率.............................54
圖九、二氧化碳之直接影響:斜紋夜蛾幼蟲於不同二氧化碳濃度的溫室中,並餵飼人工飼料後,斜紋夜蛾幼蟲之生長速率................55
圖十、(A)二氧化碳之間接影響:餵飼斜紋夜蛾幼蟲不同二氧化碳處理花椰菜(作物)及小葶藶(雜草)葉片後,斜紋夜蛾幼蟲之生長速率;(B)二氧化碳與植物之交互作用影響:斜紋夜蛾幼蟲於不同二氧化碳濃度的溫室中,餵飼不同二氧化碳處理的花椰菜及小葶藶植株後,斜紋夜蛾幼蟲之生長速率.....................................56
附錄一、斜紋夜蛾人工飼料之配方............................57
附錄二、斜紋夜蛾成蟲糖水之配方............................58
附錄三、在溫室中的二氧化碳鋼瓶,用來提升二氧化碳濃度.........59
附錄四、溫室中的二氧化碳偵測器,並記錄溫室中的二氧化碳濃度...60

王喻其、王泰權、陳富翔、蔡永勝、李宏萍、費雯綺。2012。植物保護手冊。農業藥物毒物試驗所。1079頁。
行政院農業委員會。2014。農業統計年報。台北。行政院農業委員會。
行政院農業委員會、農業試驗所、中國種苗改進協會所編。1994。台灣地區現有作物栽培品種名錄─十字花科篇,農業試驗所特刊第43號。327 頁。
吳剛、陳法軍、戈峰。2006年。CO2濃度上升對棉鈴蟲生長發育和繁殖的直接影響。生態學報 25: 1732-1738。
高穗生。1995。昆蟲之大量飼育。藥試所專題報導37:1-8。
張煥英、李兆彬、陳昇寬、林明瑩、宋一鑫。2008。十字花科作物重要害蟲之發生與防治。臺南區農業專訊 66: 13-22。
費雯綺、王喻其。2007。植物保護手冊─蔬菜篇。台中。229頁。行政院農業委員會農業藥物毒物試驗所。229頁。
楊遠波、劉和義、林讚標。2000。台灣維管束植物簡誌,第二卷,行政院農業委員會。722頁。
歐陽盛芝。1994。斜紋夜蛾 (Spodoptera litura (F.)) 的生命表。中華昆蟲14:183-205。
蔡偉皇、江明耀。2009。斜紋夜蛾監測與共同防治。豐年半月刊 59:45-47。
鄭秋玲、許長漢。2003。日本紋白蝶 (Pieris rapae crucivora) (鱗翅目:粉蝶科) 之形態及溫度對其發育之影響。植物保護學會會刊 45:271-284。
Abrell, L., Guerenstein, P. G., Mechaber, W. L., Stange, G., Christensen, T. A., Nakanishi, K., and Hildebrand, J. G. (2005). Effect of elevated atmospheric CO2 on oviposition behavior in Manduca sexta moths. Global Change Biology, 11: 1272-1282.
Agrell, J., McDonald, E. P., and Lindroth, R. L. (2000). Effects of CO2 and light on tree phytochemistry and insect performance. Oikos, 88: 259-272.
Ainsworth, E. A., and Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment, 30: 258-270.
Ali, J. G., and Agrawal, A. A. (2012). Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 17: 293-302.
Altesor, P., García, Á., Font, E., Rodríguez-Haralambides, A., Vilaró, F., Oesterheld, M., Soler R., and González, A. (2014). Glycoalkaloids of wild and cultivated Solanum: effects on specialist and generalist insect herbivores. Journal of Chemical Ecology, 40: 599-608.
Arnone III, J. A., Zaller, J. G., Körner, C., Ziegler, C., and Zandt, H. (1995). Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2. Oecologia, 104: 72-78.
Asshoff, R., Zotz, G., and Koerner, C. (2006). Growth and phenology of mature temperate forest trees in elevated CO2. Global Change Biology, 12: 848-861.
Atwell, B. J., Henery, M. L., and Ball, M. C. (2009). Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO2 enrichment? Plant, Cell & Environment, 32: 553-566.
Awmack, C., Harrington, R., and Leather, S. (1997). Host plant effects on the performance of the aphid Aulacorthum solani (Kalt.) (Homoptera: Aphididae) at ambient and elevated CO2. Global Change Biology, 3: 545-549.
Barbehenn, R. V., Karowe, D. N., and Spickard, A. (2004). Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars. Oecologia, 140: 86-95.
Bazzaz, F. A. (1990). The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics, 21: 167-196.
Bazzaz, F. A., Chiariello, N. R., Coley, P. D., and Pitelka, L. F. (1987). Allocating resources to reproduction and defense. BioScience, 37: 58-67.
Beekweelder, J., van Leeuwen, W., van Dam, N.M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados, L., Molthoff, J.W., Schipper, B., Verbocht, H., de Vos, R.C.H., Morandini, P., Aarts, M.G.M., and Bovy, A. (2008). The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS One, 3: e2068.
Benrey, B., Callejas, A., Rios, L., Oyama, K., and Denno, R. F. (1998). The effects of domestication of Brassica and Phaseolus the interaction between phytophagous insects and parasitoids. Biological Control, 11: 130-140.
Berzitis, E. (2013). Climate change effects on the pest status and distribution of the bean leaf beetle (Cerotoma trifurcata) (Doctoral dissertation, The University of Guelph).
Bezemer, T. M., and Jones, T. H. (1998). Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos, 82: 212-222.
Bidart-Bouzat, M. G., and lmeh-Nathaniel, A. (2008). Global chamge effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology, 50: 1339-1354.
Björkman M., Klingen I., Birch A.N.E., Bones A.M., Bruce T.J.A., Johansen T.J., Meadow R., Molmann J., Seljasen R., Smart L.E., and Stewart D. (2011) Phytochemicals of Brassicaceae in plant protection and human health: influences of climate, environment and agronomic practice. Phytochemistry, 72: 538–556.
Bogner, F., Boppré, M., Ernst, K. D., and Boeckh, J. (1986). CO2 sensitive receptors on labial palps of Rhodogastria moths (Lepidoptera: Arctiidae): physiology, fine structure and central projection. Journal of Comparative Physiology A, 158: 741-749.
Brooks, M. A. (1957). Growth-retarding effect of carbon-dioxide anaesthesia on the German cockroach. Journal of Insect Physiology, 1: 76-84.
Brooks, G. L., and Whittaker, J. B. (1998). Responses of multiple generations of Gastrophysa viridula, feeding on Rumex obtusifolius, to elevated CO2. Global Change Biology, 4: 63-75.
Bryant, J.P., Chapin III, F. S., and Klein, D. R. (1983). Carbon/nutrient balance of boreal plan plants in relation to vertebrate herbivory. Oikos, 357-368.
Cabello-Hurtado, F., Gicquel, M., and Esnault, M. A. (2012). Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolate content perspective. Food chemistry, 132: 1003-1009.
Castells, E., Roumet, C., Peñuelas, J., and Roy, J. (2002). Intraspecific variability of phenolic concentrations and their responses to elevated CO2 in two Mediterranean perennial grasses. Environmental and Experimental Botany, 47: 205-216.
Centritto, M., and Jarvis, P. G. (1999). Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). II. Photosynthetic capacity and nitrogen use efficiency. Tree physiology, 19: 807-814.
Chen, Y. H. and Bernal, C. C. (2011). Arthropod diversity and community composition on wild and cultivated rice. Agricultural and Forest Entomology, 13: 181-189.
Chen, Y. H., and Welter, S. C. (2003). Confused by domestication: incongruent behavioral responses of the sunflower moth, Homoeosoma electellum (Lepidoptera: Pyralidae) and its parasitoid, Dolichogenidea homoeosomae (Hymenoptera: Braconidae), towards wild and domesticated sunflowers. Biological Control, 28: 180-190.
Chen, Y. H., Gols, R., and Benrey, B. (2015). Crop domestication and its impact on naturally selected trophic interactions. Annual Review of Entomology, 60: 35-58.
Chen, Y. H., Langellotto, G. A., Barrion, A. T., and Cuong, N. L. (2013). Cultivation of domesticated rice alters arthropod biodiversity and community composition. Annals of the Entomological Society of America, 106: 100-110.
Chen, F., Wu, G., Ge, F., Parajulee, M. N., and Shrestha, R. B. (2005). Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomologia Experimentalis et Applicata, 115: 341-350.
Cipollini, M. L., Drake, B. G., and Whigham, D. (1993). Effects of elevated CO2 on growth and carbon/nutrient balance in the deciduous woody shrub Lindera benzoin (L.) Blume (Lauraceae). Oecologia, 96: 339-346.
Coley, P., Massa, M., Lovelock, C., and Winter, K. (2002). Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia, 133: 62-69.
Cotrufo, M. F., Ineson, P., and Scott, A. (1998). Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 4: 43-54.
Couture, J. J., Meehan, T. D., and Lindroth, R. L. (2012). Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Oecologia, 168: 863-876.
Curtis, P. S., Vogel, C. S., Pregitzer, K. S., Zak, D. R., and Teeri, J. A. (1995). Interacting effects of soil fertility and atmospheric CO2 on leaf area growth and carbon gain physiology in Populus×euramericana (Dode) Guinier. New Phytologist, 129: 253-263.
Denison, R. F., and McGuire, A. M. (2015). What should agriculture copy from natural ecosystems? Global Food Security, 4: 30-36.
Dermody, O., O’Neill, B. F., Zangerl, A. R., Berenbaum, M. R., and DeLucia, E. H. (2008). Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod-Plant Interactions, 2: 125-135.
Dreyer, D. L., and Jones, K. C. (1981). Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: aphid feeding deterrents in wheat. Phytochemistry, 20: 2489-2493.
Evans, L. T. 1993. Crop Evolution, Adaptation and Yield. Cambridge Univ. Press, Cambridge, U.K.
Fahey, J. W., Zalcmann, A. T., and Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56: 5-51.
Fajer, E. D. (1989). The effects of enriched CO2 atmospheres on plant-insect herbivore interactions: growth responses of larvae of the specialist butterfly, Junonia coenia (Lepidoptera: Nymphalidae). Oecologia, 81: 514-520.
Fajer, E. D., Bowers, M. D., and Bazzaz, F. A. (1991). The effects of enriched CO2 atmospheres on the Buckeye Butterfly, Junonia Coenia. Ecology, 72: 751-754.
Fajer, E. D., Bowers, M. D., and Bazzaz, F. A. (1992). The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in Plantago: a test of the carbon/nutrient balance hypothesis. American Naturalist, 140: 707-723.
Foss, A. R., Mattson, W. J., and Trier, T. M. (2013). Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates. Environmental Entomology, 42: 503-514.
Gepts, P. (2004). Crop domestication as a long-term selection experiment. Plant Breeding Reviews, 24: 1-44.
Ghasemzadeh, A., Jaafar, H. Z., Karimi, E., and Ashkani, S. (2014). Changes in nutritional metabolites of young ginger (Zingiber officinale Roscoe) in response to elevated carbon dioxide. Molecules, 19: 16693-16706.
Gifford, R. M., Barrett, D. J., and Lutze, J. L. (2000). The effects of elevated [CO2] on the C: N and C: P mass ratios of plant tissues. Plant and Soil, 224: 1-14.
Gols, R., Bukovinszky, T., Van Dam, N. M., Dicke, M., Bullock, J. M., and Harvey, J. A. (2008). Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. Journal of Chemical Ecology, 34: 132-143.
Gotthard K., Nylin S., and Wiklund C. (1994). Adaptive variation in growth rate: life history costs and consequences in the speckled wood butterfly, Pararge aegeria. Oecologia, 99: 281-289.
Guerenstein, P. G., and Hildebrand, J. G. (2008). Roles and effects of environmental carbon dioxide in insect life. Annual Review of Entomology, 53: 161-178.
Guo, H., Sun, Y., Li, Y., Liu, X., Zhang, W., and Ge, F. (2014). Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. New Phytologist, 201: 279-291.
Hartley, S. E., Jones, C. G., Couper, G. C., and Jones, T. H. (2000). Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Global Change Biology, 6: 497-506.
Hopkins, R. J., van Dam, N. M., and van Loon, J. J. (2009). Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology, 54: 57-83.
Houghton, J., Ding, Y., Griggs, D., Noguer, M., Van Der Linden, P., Xiaosu, D., Maskell, K., and Johnson, C. (2001). Climate change 2001: The scientific basis. Cambridge University Press, Cambridge
Huang T. C., (1996). Flora of Taiwan, Second Edition, Vol. II, Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, p. 766.
Hubbell, S. P., and Foster, R. B. (1992). Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management. Oikos, 63: 48-61.
Hwang, S. Y., Peng, J. J., Huang, J. C., and Hsu, T. W. (2004). The survey of invasive plants in Taiwan. Endemic Species Research Institute, Nantou, Taiwan. 55pp.
Idris, A. B., and Grafius, E. (1996). Effects of wild and cultivated host plants on oviposition, survival, and development of diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environmental Entomology, 25: 825-833.
Idso, S., and Kimball, B. (1997). Effects of long‐term atmospheric CO2 enrichment on the growth and fruit production of sour orange trees. Global Change Biology, 3: 89-96.
Karowe, D. N., Grubb, C. (2011). Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). Journal of Chemical Ecology, 37: 1332-1340.
Karowe, D. N., and Migliaccio, A. (2011). Performance of the legume-feeding herbivore, Colias philodice (Lepidoptera: Pieridae) is not affected by elevated CO2. Arthropod-Plant Interactions, 5: 107-114.
Karowe, D.N., Seimens, D.H., Mitchell-Olds, T. (1997). Species-specific response of glucosinolate content to elevated atmospheric CO2. Journal of Chemical Ecology, 23: 2569-2582.
Kinney, K. K., Lindroth, R. L., Jung, S. M., and Nordheim, E. V. (1997). Effects of CO2 and NO3-availability on deciduous trees: phytochemistry and insect performance. Ecology, 78: 215-230.
Klaiber, J., Najar-Rodriguez, A. J., Dialer, E., and Dorn, S. (2013a). Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biological Control, 66: 49-55.
Klaiber, J., Dorn, S., and Najar-Rodriguez, A. J. (2013b). Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds. Journal of Chemical Ecology, 39: 653-665.
Klaiber, J., Najar-Rodriguez, A. J., Piskorski, R., and Dorn, S. (2013c). Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta, 237: 29-42.
Kos, M., Houshyani, B., Wietsma, R., Kabouw, P., Vet, L. E., van Loon, J. J., and Dicke, M. (2012). Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry, 77: 162-170.
Krieger, R. I., Feeny, P. P., and Wilkinson, C. F. (1971). Detoxication enzymes in the guts of caterpillars: An evolutionary answer to plant defenses? Science, 172: 579-581.
Lammertsma, E. I., de Boer, H. J., Dekker, S. C., Dilcher, D. L., Lotter, A. F., and Wagner-Cremer, F. (2011). Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences, 108: 4035-4040.
Landsberg, J., and Smith, M. S. (1992). A functional scheme for predicting the outbreak potential of herbivorous insects under global atmospheric change. Australian Journal of Botany, 40: 565-577.
Landosky, J. M., and Karowe, D. N. (2014). Will chemical defenses become more effective against specialist herbivores under elevated CO2? Global Change Biology, 20: 3159-3176.
Lang, C. A. (1958). Simple microdetermination of Kjeldahl nitrogen in biological materials. Analytical Chemistry, 30:1692-1694.
Leiss, K. A., Cristofori, G., van Steenis, R., Verpoorte, R., and Klinkhamer, P. G. (2013). An eco-metabolomic study of host plant resistance to Western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry, 93: 63-70.
Lincoln, D. E., Couvet, D., and Sionit, N. (1986). Response of an insect herbivore to host plants grown in carbon dioxide enriched atmospheres. Oecologia, 69: 556-560.
Lindroth R.L. (1996) CO2-mediated changes in tree chemistry and tree-lepidopteran interactions. In: Carbon Dioxide and Terrestrial Ecosystems (eds Koch GW, Mooney HA), pp. 105-120. Academic Press, San Diego, CA.
Lindroth, R. L., Kinney, K. K., and Platz, C. L. (1993). Responses of diciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology, 74: 763-777.
Lindroth, R., Roth, S., Kruger, E., Volin, J., and Koss, P. (1997). CO2‐mediated changes in aspen chemistry: effects on gypsy moth performance and susceptibility to virus. Global Change Biology, 3: 279-289.
Macfadyen, S., and Bohan, D. A. (2010). Crop domestication and the disruption of species interactions. Basic and Applied Ecology, 11: 116-125.
Makino, A., and Mae, T. (1999). Photosynthesis and plant growth at elevated levels of CO2. Plant and Cell Physiology, 40: 999-1006.
Massei, G., and Hartley, S. E. (2000). Disarmed by domestication? Induced responses to browsing in wild and cultivated olive. Oecologia, 122: 225-231.
Mattson, W. J. (1980). Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11: 119-161.
Mithen, R. (2001). Glucosinolates–biochemistry, genetics and biological activity. Plant Growth Regulation, 34: 91-103.
Mumm, R., Posthumus, M. A., and Dicke, M. (2008). Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant, Cell & Environment, 31: 575-585.
Murray, T. J., Ellsworth, D. S., Tissue, D. T., and Riegler, M. (2013). Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Global Change Biology, 19: 1407-1416.
Nitao, J. K., Zangerl, A. R., Berenbaum, M. R., Hamilton, J. G., and Delucia, E. H. (2002). CNB: requiescat in pace? Oikos, 98: 540-546.
Ohmart, C. P., Stewart, L. G., and Thomas, J. R. (1985). Effects of food quality, particularly nitrogen concentrations, of Eucalyptus blakelyi foliage on the growth of Paropsis atomaria larvae (Coleoptera: Chrysomelidae). Oecologia, 65: 543-549.
Peñuelas, J., and Estiarte, M. (1998). Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution, 13: 20-24.
Peñuelas, J., Estiarte, M., and Llusia, J. (1997). Carbon-based secondary compounds at elevated CO2. Photosynthetica, 33: 313-319.
Peñuelas, J., Estiarte, M., Kimball, B. A., Idso, S. B, Pinter, P. J., Wall, G. W., Garcia, R. L., Hansaker, D. J., LaMorte, R. L., and Hendrix., D. L. (1996). Variety of responses of plant phenolic concentration to CO2 enrichment. Journal of Experimental Botany, 47: 1463-1467.
Poorter, H. (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio, 104: 77-97.
Poorter, H., Berkel, Y., Baxter, R., Hertog, J., Dijkstra, P., Gifford, R. M., Griffin, K. L., Roumet, C., Roy, J., Song, S. C., Van Berkel, Y. and den Hertog, J. (1997). The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell & Environment, 20: 472-482.
Prado, F. E., González, J. A., Boero, C., and Sampietro, A. R. (1998). A simple and sensitive method for determining reducing sugars in plant tissues. Application to quantify the sugar content in Quinoa (Chenopodium quinoa Willd.) seedlings. Phytochemical Analysis, 9: 58-62.
Rao, M. S., Srinivas, K., Vanaja, M., Rao, G. G. S. N., and Venkateswarlu, B. (2009). Host plant (Ricinus communis Linn.) mediated effects of elevated CO2 on growth performance. Current Science, 97: 1047-1054.
Rao, M. S., Manimanjari, D., Vanaja, M., Rao, C. R., Srinivas, K., Rao, V. U. M., and Venkateswarlu, B. (2012). Impact of elevated CO2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Journal of Insect Science, 12: 1-10.
Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T., and Kroymann, J. (2002). Disarming the mustard oil bomb. Proceedings of the National Academy of Sciences, 99: 11223-11228.
Reddy, C. S., Naqvi, A. H., and Raju, V. S. (2000). Rorippa dubia (Pers.) Hara (Brassicaceae): A new record for southern India. Journal of Economic and Taxonomic Botany, 24: 287-288.
Reddy, A. R., Rasineni, G. K., and Raghavendra, A. S. (2010). The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, 99: 46-57.
Reddy, G. V., Tossavainen, P., Nerg, A. M., and Holopainen, J. K. (2004). Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, Spodoptera littoralis. Journal of Agricultural and Food Chemistry, 52: 4185-4191.
Reekie, E. G., MacDougall, G., Wong, I., and Hicklenton, P. R. (1998). Effect of sink size on growth response to elevated atmospheric CO2 within the genus Brassica. Canadian Journal of Botany, 76: 829-835.
Reudler, J. H., Biere, A., Harvey, J. A., and Van Nouhuys, S. (2011). Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. Journal of Chemical Ecology, 37: 765-778.
Robinson, E. A., Ryan, G. D., and Newman, J. A. (2012). A meta‐analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194: 321-336.
Rodríguez -Saona, C., Vorsa, N., Singh, A. P., Johnson-Cicalese, J., Szendrei, Z., Mescher, M. C., and Frost, C. J. (2011). Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. Journal of Experimental Botany, 62: 2633-2644.
Rosenthal, J. P., and Dirzo, R. (1997). Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives. Evolutionary Ecology, 11: 337-355.
Rosenthal, J. P., and Welter, S. C. (1995). Tolerance to herbivory by a stemboring caterpillar in architecturally distinct maizes and wild relatives. Oecologia, 102: 146-155.
Roth, S. K., and Lindroth, R. L. (1994). Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia, 98: 133-138.
Roth, S. K., and Lindroth, R. L. (1995). Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect‐parasitoid interactions. Global Change Biology, 1: 173-182.
Rufty Jr, T. W., Jackson, D. M., Severson, R. F., Lam Jr, J. J., and Snook, M. E. (1989). Alterations in growth and chemical constituents of tobacco in response to carbon dioxide enrichment. Journal of Agricultural and Food Chemistry, 37: 552-555.
Sabzalian, M. R., Saeidi, G., Mirlohi, A., and Hatami, B. (2010). Wild safflower species (Carthamus oxyacanthus): A possible source of resistance to the safflower fly (Acanthiophilus helianthi). Crop Protection, 29: 550-555.
Santolamazza-Carbone, S., Sotelo, T., Velasco, P., and Cartea, M. E. (2015). Antibiotic properties of the glucosinolates of Brassica oleracea var. acephala similarly affect generalist and specialist larvae of two lepidopteran pests. Journal of Pest Science, 89: 1-12.
Schaedler, M., Roeder, M., Brandl, R., and Matthies, D. (2007). Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Global Change Biology, 13: 1005-1015.
Schonhof, I., Kläring, H. P., Krumbein, A., and Schreiner, M. (2007). Interaction between atmospheric CO2 and glucosinolates in broccoli. Journal of Chemical Ecology, 33: 105-114.
Simmonds, N. W. 1979. Principles of Crop Improvement. Longman, London and New York.
Slansky Jr, F., and Feeny, P. (1977). Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs, 47: 209-228.
Srinivasa Rao, M., Manimanjari, D. V., M–Rama, R. A. O., and CA–Srinivas, K. (2015). Response of multiple generations of tobacco caterpillar Spodoptera litura Fab, feeding on peanut, to elevated CO2. Applied Ecology and Environmental Research, 13: 373-386.
Stange G, and Wong C. 1993. Moth response to climate. Nature, 365: 699–700
Stange, G., Monro, J., Stowe, S., and Osmond, C. B. (1995). The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta. Oecologia, 102: 341-352.
Stiling, P., and Cornelissen, T. (2007). How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta‐analysis of CO2‐mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13: 1823-1842.
Stiling, P., Moon, D. C., Hunter, M. D., Colson, J., Rossi, A. M., Hymus, G. J., and Drake, B. G. (2003). Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia, 134: 82-87.
Taub, D. R., and Wang, X. (2008). Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology, 50: 1365-1374.
Tilman, D. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, New Jersey, USA.
Tsao, R., Yu, Q., Friesen, I., Potter, J., and Chiba, M. (2000). Factors affecting the dissolution and degradation of oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. Journal of Agricultural and Food Chemistry, 48: 1898-1902.
Turcotte, M. M., Turley, N. E., and Johnson, M. T. (2014). The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytologist, 204: 671-681.
Turcotte, M. M., Lochab, A. K., Turley, N. E., and Johnson, M. T. (2015). Plant domestication slows pest evolution. Ecology letters, 18: 907-915.
Velioglu, Y. S., Mazza, G., Gao, L., and Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113-4117.
Veteli, T. O., Kuokkanen, K., Julkunem-Tiitto, R., Roininen, H., and Tahvanainen, J. (2002). Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Global Change Biology, 8: 1240-1252.
Wang, X.G., Nadel, H., Johnson, M.W., Daane, K.M., Hoelmer, K., Walton, V.M., Pickett, C.H., and Sime, K.R. (2009). Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic and Applied Ecology, 10: 216-227.
White, A. C., Rogers, A., Rees, M., and Osborne, C. P. (2016). How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany, 67: 31-45.
Williams, R. S., Lincoln, D. E., and Norby, R. J. (2003). Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia, 137: 114-122.
Wise, I. L., Lamb, R. J., and Smith, M. A. H. (2001). Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae). The Canadian Entomologist, 133: 255-267.
Wittstock, U., Agerbirk, N., Stauber, E.J., Olsen, C.E., Hippler, M., Mitchell-Olds, T., Gershenzon, J., Vogel, H. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101: 4859-4864.
Wong, S. C. (1990). Elevated atmospheric partial pressure of CO2 and plant growth: II. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosynthesis Research, 23: 171-180.
Wu, G., Chen, F. J., and Ge, F. (2006). Response of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2. Journal of Applied Entomology, 130: 2-9.
Wu, G., Chen, F. J., Sun, Y. C., and Ge, F. (2007). Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls under elevated CO2. Journal of Environmental Sciences, 19: 1318-1325.
Xie, H., Zhao, L., Yang, Q., Wang, Z., and He, K. (2015). Direct effects of elevated CO2 levels on the fitness performance of Asian Corn Borer (Lepidoptera: Crambidae) for multigenerations. Environmental Entomology, 44: 1250-1257.
Yelle, S., Beeson, R. C., Trudel, M. J., and Gosselin, A. (1989). Acclimation of two tomato species to high atmospheric CO2 I. Sugar and starch concentrations. Plant Physiology, 90: 1465-1472.
Yin, J., Sun, Y., Wu, G., and Ge, F. (2010). Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera. Entomologia Experimentalis et Applicata, 136: 12-20.
Zhang, P. J., Lu, Y. B., Zalucki, M. P., and Liu, S. S. (2012). Relationship between adult oviposition preference and larval performance of the diamondback moth, Plutella xylostella. Journal of Pest Science, 85: 247-252.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top