|
A.Image Segmentation [1]X. Ren and J. Malik, “Learning a classification model for segmentation,” In ICCV, pp. 10-17, 2003. [2]R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274 - 2282, May 2012. [3]D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” In ICCV, pp.416-423, 2001. [4]T. Kim and K. Lee, “Learning full pairwise affinities for spectral segmentation,” In CVPR, pp. 2101-2108, 2010. [5]Z. Li, X. M. Wu, and S. F. Chang, “Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach,” In CVPR, pp. 789-796, 2012. [6]R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward objective evaluation of image segmentation algorithms,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 929–944, 2007. [7]M. Meilǎ, “Comparing clusterings: an axiomatic view,” In ICML, pp. 577-584, 2005. [8]J. Freixenet, X. Muñoz, D. Raba, J. Martí, and X. Cufí, “Yet another survey on image segmentation: region and boundary information integration,” In ECCV, pp. 408-422, 2002. [9]J. Shi and J. Malik, “Normalized cuts and image segmentation.” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000. [10]D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002. [11]P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” International Journal of Computer Vision, vol. 59, no. 2, pp. 167–181, 2004. [12]Y. Deng and B. S. Manjunath, “Unsupervised segmentation of color-texture regions in images and video,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 8, pp. 800–810, 2001. [13]T. Cour, F. Benezit, J. Shi, “Spectral segmentation with multiscale graph decomposition,” In CVPR, pp. 1124-1131, 2005. [14]J. Wang, Y. Jia, X. S. Hua, C. Zhang, and L. Quan, “Normalized tree partitioning for image segmentation,” In CVPR, pp. 1-8, 2008. [15]M. Donoser, M. Urschler, M. Hirzer, and H. Bischof, “Saliency driven total variation segmentation,” In ICCV, pp. 817-824, 2009. [16]S. R. Rao, H. Mobahi, A. Y. Yang, S. S. Sastry, and Y. Ma, “Natural image segmentation with adaptive texture and boundary encoding,” In ACCV, pp. 135-146, 2009. [17]P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, “From contours to regions: an empirical evaluation,” In CVPR, pp. 2294-2301, 2009. B.Clustering Techniques [18]L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” In NIPS, pp. 1601–1608. 2004. [19]W. Y. Chen, Y. Song, H. Bai, C. J. Lin, and E. Y. Chang, “Parallel spectral clustering in distributed systems,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 568-586, March 2011. [20]A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” Advances in neural information processing systems, vol. 2, pp. 849–856, 2002. [21]S. X. Yu and J. Shi, “Multiclass spectral clustering,” In ICCV, pp. 313–319, 2003. [22]I. Dhillon, “Co-clustering documents and words using bipartite spectral graph partitioning,” In ACM SIGKDD, pp. 269-274, 2001 [23]H. Zha, X. He, C. Ding, H. Simon, and M. Gu, “Bipartitegraph partitioning and data clustering,” In CIKM, pp.25-32, 2001. C.Saliency Detection [24]U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Is bottom-up attention useful for object recognition?” in CVPR, pp. II–37, 2004. [25]L. Itti and C. Koch, “Computational modelling of visual attention,” Nature reviews neuroscience, vol. 2, no. 3, pp. 194–203, 2001. [26]L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998. [27]Y. F. Ma and H. J. Zhang, “Contrast-based image attention analysis by using fuzzy growing,” in Proceedings of the eleventh ACM international conference on Multimedia. ACM, pp. 374–381, 2003. [28]J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” In NIPS, pp. 545-552, 2006. [29]X. Hou and L. Zhang, “Saliency detection: a spectral residual approach,” in CVPR, pp. 1–8, 2007. [30]R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk, “Salient region detection and segmentation,” in Computer Vision Systems. Springer, pp. 66–75, 2008. [31]S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Trans. PAMI, vol. 34, no. 10, pp. 1915–1926, 2012. [32]R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned salient region detection,” in CVPR, pp. 1597–1604, 2009. [33]Y. Zhai and M. Shah, “Visual attention detection in video sequences using spatiotemporal cues,” in Proceedings of the 14th annual ACM international conference on Multimedia. ACM, pp. 815–824, 2006. [34]M. M. Cheng, G. X. Zhang, N. J. Mitra, X. Huang, and S. M. Hu, “Global contrast based salient region detection,” in CVPR, pp. 409–416, 2011. [35]H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li, “Automatic salient object segmentation based on context and shape prior,” in BMVC, vol. 3, no. 4, , p. 7, 2011. [36]F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters: contrast based filtering for salient region detection,” in CVPR, pp. 733–740, 2012. [37]A. Borji, D. N. Sihite, and L. Itti, “Salient object detection: a benchmark,” in ECCV, pp. 414–429, 2012. [38]W. Einhäuser and P. König, “Does luminance-contrast contribute to a saliency map for overt visual attention?” European Journal of Neuroscience, vol. 17, no. 5, pp. 1089–1097, 2003. [39]K. Koffka. Principles of Gestalt Psychology. Routledge & Kegan Paul, 1955 [40]T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict where humans look,” In ICCV, pp. 2106–2113, 2009. [41]J. Reynolds and R. Desimone, “Interacting roles of attention and visual salience in v4,” Neuron, vol. 37, no. 5, pp. 853–863, 2003. [42]T. Kadir and M. Brady, “Saliency, scale and image description,” International Journal of Computer Vision, vol. 45, no. 2, pp. 83–105, 2001. [43]T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H. Y. Shum, “Learning to detect a salient object,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 2, pp. 353–367, 2011. D.Computer Vision Applications [44]J. Xue, C. Li, and N. Zheng, “Proto-object based rate control for jpeg2000: an approach to content-based scalability,” IEEE Trans. Image Processing, vol. 20, no. 4, pp. 1177–1184, 2011. [45]T. Chen, M. M. Cheng, P. Tan, A. Shamir, and S. M. Hu, “Sketch2photo: internet image montage,” in ACM Transactions on Graphics (TOG), vol. 28, no. 5. ACM, p. 124, 2009. [46]J. Han, K. N. Ngan, M. Li, and H.-J. Zhang, “Unsupervised extraction of visual attention objects in color images,” IEEE Trans. Circuits and Systems for Video Technology, vol. 16, no. 1, pp. 141–145, 2006. [47]O. C. Chen and C. C. Chen, “Automatically-determined region of interest in jpeg 2000,” IEEE Trans. Multimedia, vol. 9, no. 7, pp. 1333–1345, 2007. [48]Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–1137, 2004. [49]S. Avidan and A. Shamir, “Seam carving for content-aware image resizing,” ACM Transactions on graphics (TOG), vol. 26, no. 3. ACM, p. 10, 2007. [50]Y. S. Wang, C. L. Tai, O. Sorkine, and T. Y. Lee, “Optimized scale-and-stretch for image resizing,” ACM Transactions on Graphics (TOG), vol. 27, no. 5, p. 118, 2008. [51]H. Wu, Y. S. Wang, K. C. Feng, T. T. Wong, T. Y. Lee, and P. A. Heng, “Resizing by symmetry-summarization,” ACM Transactions on Graphics (TOG), vol. 29, no. 6, p. 159, 2010. E.Mathematic Tools [52]A. Criminisi, T. Sharp, C. Rother, and P. Pérez, “Geodesic image and video editing,” ACM Transactions on Graphics (TOG), vol. 29, no. 5, p.134, 2010. [53]A. Adams, J. Baek, and M. A. Davis, “Fast high-dimensional filtering using the permutohedral lattice,” In Computer Graphics Forum, vol. 29, no. 2, pp. 753-762, 2010. [54]J. Dolson, J. Baek, C. Plagemann, and S. Thrun, “Upsampling range data in dynamic environments,” In CVPR, pp. 1141–1148, 2010. [55]G. Golub and C. Van Loan. Matrix computations. Johns Hopkins University Press, 1996.
|