跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林蘇逸
研究生(外文):Su-Yi Lin
論文名稱:高演色性白光發光二極體之研究
論文名稱(外文):The research on high color rendering index white light light-emitting diode
指導教授:李允立
指導教授(外文):Yun-Li Li
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:82
中文關鍵詞:發光二極體螢光粉演色性白光照明
外文關鍵詞:LEDphosphorCRIcolor rendering indexwhite lightillumination
相關次數:
  • 被引用被引用:28
  • 點閱點閱:840
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在過去LED的主要市場為單色光LED,其應用是在產品上作為指示光源。直至1996年日本日亞化學公司發展出以藍光LED搭配黃光螢光粉(YAG)製作出高效率白光LED,人們才對於白光LED照明時代的來臨的看見了一線曙光。隨著藍光LED晶片發光效率的提升,現今高效率白光LED的流明效率已經達到了90 lm/W已超出一般常用照明的流明效率,白熾燈泡約20lm/W與螢光燈管約70~80 lm/W。照明光源的功用除了顯示被照物體的形狀以及大小外,而呈現物體真實色彩的能力更是評估一個照明光源的重要指標,定義這能力好壞的標準就是所謂的演色性(color rendition)。常見的白光LED其CRI值約在40~70,對照明光源而言這樣的演色性表現是不夠的。

本研究主旨在於探討如何以模擬方式預估由藍光LED晶片激發多種螢光粉所製作出高演色性白光LED光學性質,藉由螢光粉塗布上改良增進模擬結果的精確度。由模擬方式預估高演色性白光LED頻譜組合,利用多層螢光粉塗布方式製作出CCT 3000K CRI 96與CCT 6500K CRI 87.6的高演色性白光LED。整體而言模擬與實驗結果相似,相信此模擬方式可評估多種螢光粉組合對於白光LED光學性質影響,藉由多層塗布方式可減少螢光粉放光在不同螢光粉間相互吸收效應。

在多色LED混成高演色性白光光源研究方面,以高斯(Gaussion)分布模擬LED發光頻譜。由溫度對LED晶片影響出發,探討當LED受熱時發光強度衰減、主波長紅移與半高強度寬增加等現象,利用適當晶片選擇方式製混成穩定高演色性LED白光光源。模擬結果得知在最佳化情況下四色LED白光光源CRI比三色LED白光光源高約10,對於溫度的影響四色LED也比三色LED模擬結果來的穩定,因此相信四色LED比起三色LED白光光源更適合做為照明光源。
The major market of the light-emitting diode was the monochromatic light LED in the past. The application of LED was the indicative light on the products. Until the Nichia chemical company in Japan developed the high efficiency white light LED which was combined the blue LED chip with the yellow phosphor (YAG) in 1996, people started to expect the coming of the white light LED illuminative period. With the improving of the blue LED chip’s efficiency, the luminous efficiency of the high power white light LED is 90lm/W which is higher than the fluorescent lamp. The functions of the illumination are showing the shape, color and size of the object. The ability of showing the true colors is an important assize to estimate an illumination, and the color rendering index (CRI) is a stander to estimate this ability. The CRI of the general white light LED is about 50~70, and it’s not enough for the illumination.

This study aims at discuss on the simulation of the high CRI white light LED which was combined the blue chip with multi-color phosphor, and calculate the optical properties of the high CRI white light LED. The accuracy of simulation results is improved by improving the phosphor daub. This study simulates the spectra of high CRI white light LEDs and makes the high CRI white light LEDs with the CCT 3000K CRI 96 and CCT 6500K CRI 87.6 by multi-layers phosphor daub. The simulation results and experimental results are similar. It’s believed this simulation can estimate the phosphors’ abilities to make the high CRI white light LED and the multi-layer phosphor daub can decrease the absorption of the light which is emitted by the phosphors.


In the study of high CRI white light source which is formed by multi-color LED chip, I use the Gaussion distribution to simulate the LED’s spectrum. When the temperature is rising, the thermal effects on the LED chip are the decreasing of radiation power, red shift of peak wavelength and increasing of FWHM. By choosing the LEDs combination and using the feedback system the high CRI white light source can be made. The simulation results show that the CRI of four-color LED white light source is higher the three-color one and the four-color LED white light source with the smaller CRI shift when temperature rising. It’s is believed that four-color LED white light sources is a better illumination than three-color one.
目錄
口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 前言 1
1.1 研究動機 1
1.2 白光LED之應用 2
第二章 基礎原理 4
2.1 LED簡介 4
2.2 螢光粉發光原理 7
2.3 LED封裝技術 9
2.3.1 LED封裝結構介紹 9
2.3.2 LED封裝流程 11
2.4 色彩學 13
2.4.1 人眼敏感函數 13
2.4.2 色座標 16
2.4.3 混光原理 22
2.4.4 演色性 24
2.5 白光LED發光技術 27
2.5.1 多色LED晶片混成白光 27
2.5.2 單顆LED激發螢光粉混成白光 28
2.6 螢光粉塗布方式 30
第三章 光學模擬預測 32
3.1 TracePro光學軟體之模擬分析 32
3.1.1 Ray tracing模擬介紹 32
3.1.2 LED晶片光學模擬 35
3.2 高演色性白光LED 39
3.2.1 多色LED晶片混成穩定白光光源 40
3.2.2 單LED激發螢光粉混成白光 43
第四章 實驗方法與流程 46
4.1 實驗儀器 47
4.2 實驗樣品 49
4.3 實驗方法與流程 50
4.3.1 螢光粉塗布流程 50
4.3.2 螢光粉塗布實驗 52
4.3.3 高演色性LED製作方法 53
第五章 實驗結果與討論 56
5.1 螢光粉塗布實驗結果 56
5.2 單LED激發螢光粉混成高演色性白光LED 59
5.2.1 模擬最佳化高演色性白光LED 59
5.2.2 實驗結果量測 61
5.2.3 實驗結果與模擬結果比較 62
5.3 多色LED混成高演色性穩定白光光源 64
5.3.1 四色LED高演色性白光光源 64
5.3.2 溫度變化分析 68
5.3.3 高演色性穩定白光光源 70
5.3.4 現實LED晶片量測情形 73
5.4 實驗結果討論 76
第六章 結論與未來展望 78
6.1 結論 78
6.2 未來展望 79
參考文獻 80
參考文獻

[1] Schubert E. F. ,“Light-Eimtting Diodes”, 2nd version (2006).
[2]Yun F., Reshchikov M. A., He L., King T., Morkoc H., Novak S. W., and Wei L. “Energy band bowing parameter in AlxGa1-xN alloys” J. Appl. Phys. 92, 4837(2002)
[3]Wu J., Walukievicz W., Yu K. M., Ager J.W., Haller E. E., Lu H., and Schaff W. J. “Small band gap bowing in In1-xGaxN alloys” Appl. Phys. Lett. 80, 4741 (2002)
[4]Siozade L., Leymarie J., Disseix P., Vasson A., Mihailovic M., Grandjean N., Leroux M., and Massies J. “Modelling of thermally detected optical absorption and luminescence of (In,Ga)N/GaN heterostructures” Solid State Commum. 115, 575 (2000)
[5]DeLuca J. A., “An Introduction to Luminescence in Inorganic Solids”, J. Chem. Educ. 57, 8, 541 (1980).
[6] Chhajed S., Xi Y., Li Y.-L., Gessmann Th., and Schubert E. F., “Influence of Junction Temperature on Chromaticity and Color-Rendering Properties of Trichromatic White-Light Sources Based on Light-Emitting Diodes”, J. Appl. Phys. 97, 054506 (2005).
[7] James Petroski, GELcore, “Thermal Challenges Facing New Generation Light Emitting Diodes (LEDs) for Lighting Applications” Proc. SPIE, 4776 (2002)
[8] Barton D. L., Osinski M., Perlin P., Helms C. J., and Berg N. H., “Life Tests and Failure Mechanisms of GaN/AlGaN/InGaN Light-Emitting Diodes”, Proc. SPIE 3279, 17 (1998).
[9] CIE data of 1931 is available at http://www.cvrl.org

[10] Vos J. J., Color Res. “COLORIMETRIC AND PHOTOMETRIC PROPERTIES OF A 2 degree FUNDAMENTAL OBSERVER”, Color Research and Application, 3, 125 (1978)
[11] CIE data of 1931 color matching functions are available at http://www.cvrl.org
[12] CIE1931 chromaticity diagram is available at http://en.wikipedia.org/wiki/
[13] MacAdam D. L., “Specification of Small Chromaticity Differences”, J. Opt. Soc. Am. 33, 18 (1943).
[14] CIE publication No. 13.3 “Method of Measuring and Specifying Color-Rendering of Light Source” (1995)
[15]Narukawa Y. “White light LEDs”, Optics & Photonics News 15, No. 4,p.27
[16] Luo H., Kim J. K., Schubert E. F., Cho J., Sone C., and Park Y., “Analysis of High-Power Packages for Phosphor-Based White Llight-Emitting Diodes” , Appl. Phys. Lett. 86, 243505 (2005).
[17] Kim J. K., Luo H., Schubert E. F., Cho J., Sone C., and Park Y., “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup” , Jpn. J. Appl. Phys. – Express Lett. 44, L 649 (2005)
[18] Muth, J. F., J.H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B.P. Keller, U.K. Mishra, and S.P. DenBaars, “Absorption Coefficient, Energy Gap, Exciton Binding Energy, and Recombination Lifetime of GaN Obtained from Transmission Measurements”, Appl. Phys. Lett. 71, 18, pp.2572-2574 (1997).
[19] Ambacher, Rieger O. W., Ansmann P., Angerer H., Moustakas T. D., and Stutzman M., “Sub-Bandgap Absorption of Gallium Nitride Determined by Photothermal Deflection Spectroscopy”, Sol. State Commun. 97, 5 (1996).

[20]Laws G. M., Larkins E. C., I. Harrison, Molloy C., and Somerford D., “Improved Refractive Index Formulas for the AlxGa1–xN and InyGa1–yN Alloys”, J. Appl. Phys., 89, 2, pp. 1108–1115(2001).
[21] Planck M., Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237 (1900)
[22] Rong-Jun Xie, Naoto Hirosaki, Naoki Kimura and Ken Sakuma, and Mamoru Mitomo, “2-Phosphor-Converted White Light-Emitting Diodes Using Oxynitride/Nitride Phosphors”, Appl. Phys. Lett. 90, 191101 (2007)
[23]Naoki Kimura, Ken Sakuma, Syunichiro Hirafune, Kenichiro Asano, Naoto Hirosaki and Rong-Jun Xie, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode”, Appl. Phys. Lett. 90, 051109 (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top