跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/10/31 22:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明川
研究生(外文):LeeMing-Chuan
論文名稱:膨脹顆粒污泥床處理含硫酸鹽有機廢水之菌群競爭動力
論文名稱(外文):Competitive reaction kinetics of microbial groups in expanded granular sludge bed reactors treating sulfate-containing wastewater
指導教授:黃汝賢黃汝賢引用關係周信賢
指導教授(外文):Ju-Sheng HuangHsin-Hsien Chou
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
論文頁數:122
中文關鍵詞:膨脹顆粒污泥床硫酸鹽還原菌甲烷菌污泥顆粒特性競爭動力動力模式H2S抑制效應模式驗證
外文關鍵詞:expanded granular sludge bed (EGSB)H2S-inhibiting effectmodel validationkinetic modelcompetitive reaction kineticssulfate-reducing bacteriamethanogenic bacteriagranule characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
為釐清膨脹顆粒污泥床(EGSB)處理含硫酸鹽之有機廢水時,系統內硫酸鹽還原菌(SRB)與甲烷菌(MB)之競爭反應,本研究使用四組EGSB反應器系統(進流乙酸基質),其中兩組EGSB系統分別強化培養SRB和MB,取出之break-up污泥顆粒(分散污泥)可供探求SRB和MB之Intrinsic和Apparent生物動力參數(皆考量H2S對SRB和MB之抑制效應);另二組EGSB 實驗系統進行處理含硫酸鹽有機廢水之Phase I 及Phase II操作實驗,除可獲得水質及污泥顆粒特性參數(顆粒粒徑、生物密度、生物質量)外,取出之break-up污泥顆粒在混合不同比例之強化培養SRB、MB之break-up污泥顆粒後,可供探求EGSB實驗系統每一試程SRB和MB之生物分率。Phase I之研究先將兩組EGSB實驗系統固定在同一有機負荷率(4.0 kg COD/m3-d)但改變六種不同之COD/SO42-進流比(0.5、0.8、1.1、1.3、1.8及3.0),Phase II之研究則緊接著Phase I兩組EGSB實驗系統最後一個試程[COD/SO42-之進流比分別為1.1(SRB為優勢菌群)及3.0(MB為優勢菌群)]但都將有機負荷率陸續提高至6.0、6.3、6.8、7.2、7.6、8.0、8.3及8.7~9.0 kg COD/m3-d。本研究亦建立EGSB反應器之動力模式(考量H2S對SRB和MB之抑制效應),最後再以Phase I及Phase II獲得之實驗數據驗證模式之適用性。
EGSB實驗系統在有機負荷率固定為4.0 kg COD/m3-d但改變不同之COD/SO42-進流比(0.5、0.8、1.1、1.3、1.8及3.0)之操作條件下,出流水之硫化物(77~564 mg S/L)及H2S濃度(40~293 mg S/L)皆隨COD/SO42-進流比之增加而降低,而乙酸去除率都在98.5%以上,故硫化物/H2S都未對反應器內部微生物菌群造成抑制;平均顆粒粒徑隨COD/SO42-進流比之增加而略為變小;SRB之生物分率隨COD/SO42-進流比之增加而減少,MB之生物分率則隨COD/SO42-進流比之增加而增加,且亦發現COD/SO42-進流比小於/等於1.3時,SRB為優勢菌群,COD/SO42-進流比大於/等於1.8時,MB為優勢菌群。利用EGSB實驗系統之水質數據、生物質量及SRB、MB之生物分率,以化學計量式計算求得之SRB比基質利用速率(0.39~0.62 mg acetate/mg VSS-d)小於MB者(0.57~1.01 mg acetate/mg VSS-d)。EGSB實驗系統在固定之COD/SO42-進流比1.1(SRB為優勢菌群)及3.0(MB為優勢菌群)但有機負荷率由4.0陸續提高至6.0、6.3、6.8、7.2、7.6、8.0及8.3 kg COD/m3-d時,乙酸去除率分別達96.1~97.9%及94.9~98.9%,意謂著液相中之H2S(286~368 mg S/L)未對系統內之SRB造成抑制,而液相中之H2S(88~123 mg S/L)亦未對系統內之MB造成抑制。惟有機負荷率提高至8.7 kg COD/m3-d時,SRB為優勢菌群之EGSB反應器之乙酸去除率降低至80.5%,亦即液相中之H2S(429 mg S/L)已對SRB產生顯著之抑制作用;而有機負荷率提高至9.0 kg COD/m3-d時,MB為優勢菌群之EGSB反應器之乙酸去除率仍維持94.1~97.8%,亦即液相中之H2S(128~140 mg S/L)並未對MB產生抑制作用。污泥顆粒比重、粒徑、生物密度及生物質量皆隨有機負荷率之增加而增加;惟SRB及MB之生物分率不受有機負荷率之影響。比較所探求之SRB與MB Intrinsic及Apparent生物動力參數發現,kSR (1.99 mg acetate/mg VSS-d)和kSR’ (1.74 mg acetate/mg VSS-d)皆大於kM (1.57 mg acetate/mg VSS-d)和kM’ (1.30 mg acetate/mg VSS-d);乙酸為限制基質條件下,Ks,M (10 mg acetate/L)和Ks,M’ (15 mg acetate/L)皆小於Ks,a (27 mg acetate/L)和Ks,a’ (30 mg acetate/L),意謂著MB對有機物之親和性較SRB者大;KI,M (263 mg H2S/L)和KI,M’ (429 mg H2S/L)皆小於KI,SR (289 mg H2S/L)和KI,SR’ (557 mg H2S/L),由於抑制常數大小與基質利用速率成反相關,故可知MB較SRB更易受H2S之抑制。
最後,將本研究EGSB實驗系統各試程之操作條件、物理質傳參數及生物動力參數代入動力模式,求得之乙酸去除率及硫酸鹽還原率模擬值與實驗値之誤差皆在 11.6%範圍內,顯示本研究推導之EGSB反應器處理含硫酸鹽有機廢水之動力模式可應用於預測EGSB反應器處理含硫酸鹽有機廢水之液相基質濃度。
To examine the competitive-reaction kinetic behavior of sulfate-reducing bacteria (SRB) and methanogenic bacteria (MB) in expanded granular sludge bed (EGSB) reactors treating sulfate-containing wastewater, four identical EGSB reactors (with acetate as a feed substrate) were used. The two EGSB reactors were respectively used to enrich SRB and MB, and thereby the break-up granules (dispersed sludge) can be used to determine intrinsic and apparent biokinetic parameter values of SRB and MB. The other two EGSB reactors were used to proceed with Phase I and II experiments treating sulfate-containing wastewater. Thus, not only water quality data and granule characteristic parameters (granule diameter, microbial density, and biomass) can be obtained, but the mass fractions of SRB and MB (fSRB, fMB) for each test run of the EGSB reactors also be estimated by mixing break-up granules obtained from the experimental system with that obtained from the enrichment system at various proportions. In phase I experiment, the two EGSB reactors were maintained at the organic loading rate (OLR) of 4.0 kg COD/m3-d) but with six different influent COD/SO42- ratios (0.5, 0.8, 1.1, 1.3, 1.8, and 3.0). Phase II experiment proceeded immediately following the last test run of phase I experiment [i.e., the influent COD/SO42- ratios of 1.1 (SRB was a predominant microbial group) and 3.0 (MB was a predominant microbial group)] but with successive increasing OLRs from 4.0 to 6.0, 6.3, 6.8, 7.2, 7.6, 8.0, 8.3, 8.7 and 9.0 kg COD/m3-d. Taking account of inhibiting effects of free H2S on SRB and MPB, a kinetic model for EGSB reactors treating sulfate-containing wastewater was also developed and validated by experiments.
When the EGSB reactors were maintained at the OLR of 4.0 kg COD/m3-d but with six different influent COD/SO42- ratios (0.5, 0.8, 1.1, 1.3, 1.8, and 3.0), the concentrations of sulfide (77–564 mg S/L) and free H2S (40–293 mg S/L) in the effluent decreased with increasing influent COD/SO42- ratio and the acetate removal efficiency achieved greater than 98.5%, showing that sulfide/H2S did not impose an inhibiting effect on microbial groups. Meanwhile, the average granule diameter (dp) slightly decreased with increasing influent COD/SO42- ratio; fSRB decreased with increasing influent COD/SO42- ratio whereas fMB increased with increasing influent COD/SO42- ratio. It was also found that SRB became a predominant microbial group when the influent COD/SO42- ratio was maintained at less than/equal to 1.3, whereas MB became a predominant microbial group when the influent COD/SO42- ratio was maintained at greater than/equal to 1.8. By using the performance data and the mass fractions of SRB and MB together with a stoichiometric chemical equation, the calculated specific substrate utilization rate of SRB (0.39–0.62 mg acetate/mg VSS-d) was lower than that of MB (0.57–1.01 mg acetate/mg VSS-d). When the EGSB reactors were maintained at the influent COD/SO42- ratios of 1.1 (SRB was a predominant microbial group) and 3.0 (MB was a predominant microbial group) but with increasing OLR from 4.0 to 6.0, 6.3, 6.8, 7.2, 7.6, 8.0, 8.3, 8.7 and 9.0 kg COD/m3-d, the acetate removal efficiency still achieved 96.1–97.9% and 94.9–98.9%, respectively, disclosing that H2S (286–368 mg S/L) in the bulk liquid did not impose a significant inhibiting effect on SRB and that H2S (88–123 mg S/L) in the bulk liquid also did not impose a significant inhibiting effect on MB. However, with a further increase in OLR (8.7 kg COD/m3-d), the acetate removal efficiency of the EGSB reactor with the predominant microbial group of SRB declined to 80.5%, implying that H2S (429 mg S/L) in the bulk liquid imposed a significant inhibiting effect on SRB. With a further increase in OLR (9.0 kg COD/m3-d), the acetate removal efficiency of the EGSB reactor with the predominant microbial group of MB still achieved 94.1–97.8%, revealing that H2S (128–140 mg S/L) in the bulk liquid did not impose an inhibiting effect on MB. Meanwhile, with an increase in OLR, granule’s specific gravity, dp, microbial density, and biomass increased but fSRB and fMB varied slightly. By comparing the obtained intrinsic and apparent biokinetic parameters of SRB with those of MB, kSR (1.99 mg acetate/mg VSS-d) and kSR’ (1.74 mg acetate/mg VSS-d) were higher than kM (1.57 mg acetate/mg VSS-d) and kM’ (1.30 mg acetate/mg VSS-d); if acetate was growth-limiting for both SRB and MB, Ks,M (10 mg acetate/L) and Ks,M’ (15 mg acetate/L) were lower than Ks,a (27 mg acetate/L) and Ks,a’ (30 mg acetate/L), implying that the affinity of acetate to MB was greater than that to SRB; KI,M (263 mg H2S/L) and KI,M’ (429 mg H2S/L) were lower than KI,SR (289 mg H2S/L) and KI,SR’ (557 mg H2S/L), implying that free H2S imposed a greater inhibiting effect on MB. Finally, by inserting operating conditions and biological and physical parameter values into the kinetic model, the calculated acetate removal efficiency was only 11.6% deviated from the experimental acetate removal efficiency. Accordingly, the proposed kinetic model can be used to predict the treatment performance of EGSB reactors appropriately.
中文摘要 i
英文摘要 iv
誌謝 viii
目錄 ix
表目錄 xiv
圖目錄 xvi
符號說明 xxi
第一章 緒 論 1
1.1. 研究動機 1
1.2. 研究目的 3
第二章 文獻回顧 5
2.1. EGSB反應器概說 5
2.1.1. EGSB反應器之發展與特性 5
2.1.2. EGSB反應器之設計 6
2.1.3. EGSB反應器之流況 7
2.1.4. EGSB反應器之污泥顆粒特性 8
2.1.5. EGSB反應器之應用 8
2.2. 厭氣代謝反應機制 11
2.3. 厭氣代謝之硫酸鹽還原作用 13
2.3.1. 硫酸鹽還原菌之代謝. 13
2.3.2. 影響硫酸鹽還原菌生長之主要因素 15
2.4. 硫酸鹽還原菌與甲烷菌之相互關係 16
2.4.1. 硫酸鹽還原菌與甲烷菌之共生、協力現象 16
2.4.2. 硫酸鹽還原菌與甲烷菌之競爭現象 16
2.5. 硫化物毒性對厭氣處理系統之影響 20
2.5.1. 硫化物毒性對硫酸鹽還原菌之影響 20
2.5.2. 硫化物毒性對甲烷菌之影響 20
2.5.3. 影響硫化物毒性之因素 21
2.6. 硫化物之去除方法 23
2.6.1. 化學沉降法 23
2.6.2. 氣提法 24
2.6.3. 曝氣(氧/空氣)氧化法 24
2.7. 生物動力 24
2.7.1. Monod Kinetics 24
2.7.2. Monod Kinetics 26
2.7.3. Lawrence and McCarty Kinetics 27
第三章 EGSB反應器動力模式 29
3.1. 模式假設條件 29
3.2. 動力模式 29
第四章 實驗設備與方法 31
4.1. 實驗設備 31
4.1.1. EGSB實驗系統 31
4.1.2. EGSB強化培養(SRB、MB)系統 31
4.1.3. 血清瓶反應器 31
4.1.4. 儀器設備 33
4.2. 實驗方法 33
4.2.1. 合成廢水 33
4.2.2. EGSB反應器之植種、馴化及起動 34
4.2.3. EGSB實驗系統之操作 35
4.2.4. EGSB強化培養(SRB)系統之操作 37
4.2.5. EGSB強化培養(MB)系統之操作 37
4.2.6. Intrinsic及Apparent生物動力參數之探求 37
4.2.7. EGSB實驗系統SRB、MB污泥濃度(XSR、XM)之探求 41
4.3. 實驗分析方法及儀器 42
4.3.1. 水質分析 42
4.3.2. 污泥顆粒特性分析 43
4.3.3. 無氧水之配製 50
4.4. 統計分析 52
第五章 結果與討論 53
5.1. EGSB系統之處理性能 53
5.1.1. COD/SO42-進流比對處理效率之影響 53
5.1.2. 有機負荷率對處理效率之影響 55
5.2. EGSB系統之污泥顆粒特性 57
5.2.1. COD/SO42-進流比對污泥顆粒特性之影響 57
5.2.2. 有機負荷率對污泥顆粒特性之影響 60
5.2.3. 污泥顆粒之菌相分佈 60
5.3. 硫酸鹽還原菌與甲烷菌之生物分率 61
5.4. Intrinsic及Apparent生物動力參數 84
5.4.1. 硫酸鹽還原菌之生物動力參數 84
5.4.2. 甲烷菌之生物動力參數 94
5.5. 動力模式之模擬與實驗驗證 102
第六章 結 論 105
參考文獻 108
附錄 117
自述 121
Alphenaar, A., Lettinga, G. 1993. Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Process Biochem. 28, 527-537.
Alphenaar, P.A., Pérez, M.C., Lettinga, G. 1993. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules. Appl. Microbiol. Biotechnol. 39, 276-280.
Alphenaar, P.A., Visser, A., Lettinga, G. 1993. The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a hight sulfate content. Bioresoure Technol. 43, 249-258.
Annachhatre, A.P., Suktrakoolvait, S., 2001. Biological sulfate reduction using molasses as a carbon source. Water Res. 73, 118-126.
Arcand, Y., Guiot, S.R., Desrochers, M., Chavarie, C. 1994. Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. Chem. Eng. J. 56, B23-B35.
Bhattacharya, S.K., Uberoi, V. Dronamraju, M.M. 1996. Interaction between acetate fed sulfate reducers and methanogens. Water Res. 30, 2239-2246.
Buisman, C.J.N., Lettinga, G., Paasschens, C.W.M., Habets, L.H.A. 1991. Biotechnological sulfide removal from effluents. Water Sci. Technol. 24, 347-356.
Choi, E., Rim, J.M., 1991. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci. Technol. 23, 1259-1264.
Chou, H.H., Huang, J.S. 2004. Temperature dependency of granule characteristics and kinetic behavior in UASB reactors. J. Chem. Technol. Biotechnol. 79, 797-808.
Chou, H.H., Huang, J.S. 2005. Comparative granule characteristics and biokinetics of sucrose-fed and phenol-fed UASB reactor. Chemosphere 59, 107-116.
Christiansen, P., Hollesen, L., Harremoes, P. 1995. Liquid film diffusion on reaction rate in submerged biofilters. Water Res. 29, 947-952.
de Man, A.W.A., van der Last, A.R.M., Lettinga, G. 1988. The use of EGSB and UASB anaerobic systems for low strength soluble and complex wastewaters at temperatures ranging from 8 to 30℃. Adv. Water Pollut. 5, 197-209.
de Smul, A., Goethals, L., Verstraete, W. 1999. Effect of COD to sulfate ratio and temperature in expanded-granular-sludge-blanket reactors for sulfate reduction. Process Biochem. 34, 407-416.
Dries, J., de Sumul, A., Goethals, L., Grootaerd, H., Verstraete, W. 1998. High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation 9, 103-111.
Dolfing, J. 1985. Kinetics of methane formation by granular sludge at low substrate concentration, the influence of mass transfer limitation. Appl. Microbiol. Biotechnol. 22, 77-81.
Esposito, G.., Weijma, J., Pirozzi, F., Lens, P.N.L., 2003. Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor. Process Biochem. 39, 491-498.
Fang, H. H. P., Chen, T., Li, Y. Y., Chui, H. K. 1996. Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Water Res. 30, 1353-1360.
Fang, H.H.P., Chung, D.W.C. 1999. Anaerobic treatment of proteinaceous wastewater under mesophilic and thermophilic conditions. Water Sci. Technol. 40, 77-84.
Genschow, E., Hegemann, W., Maschke, C. 1996. Biological sulfate removal from tannery wastewater in a two-stage anaerobic treatment. Water Res. 30, 2072-2078.
Ghangrekar, M.M., Asolekar, S.R., Joshi, S.G. 2005. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Res. 39, 1123-1133.
Grotenhuis, J.T.C., Plugge, C.M., Stams, A.J.M., Zehnder, A.J.B. 1991. Role of substrate concentration in particle size distribution of methanogenic granular in UASB reactors. Water Res. 25, 21-27.
Guiot, S.R., Arcand, Y., Charie, C. 1992. Advantage of fluidization on granule size and activity development in upflow anaerobic sludge bed reactors. Water Sci. Technol. 26, 897-906.
Harada, H., Vemura, S., Momonoi, K. 1994. Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res. 28, 355-367.
Huang, J.S., Her, J.J., Jih, C.G.., 1998., Kinetics of denitritification and denitratification in anoxic filters. Biotechnol. Bioeng. 59, 52-61.
Huang, J.S., Jih, C.G., Lin, S.D., Ting, W.H. 2003. Process kinetics of UASB reactors treating non-inhibitory substrate. J. Chem. Technol. Biotechnol. 78, 762-772.
Isa, Z., Grusenmeyer, S., Verstraete, W., 1986. Sulfate reduction relative to methane production in high-rate anaerobic digestion: Microbiological aspects. Appl. Envir. Microbiol. 51, 580-587.
Jeison, D., Chamy, R. 1999. Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment. Water Sci. Technol. 40, 91-97.
Kalyuzhnyi, S.V., Fedorovich, V.V., 1998. Mathematical modeling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresource Technol. 65, 227-242.
Kato, M.T., Field, J.A., Kleerebezem, R., Lettinga, G. 1994. Treatment of low strength soluble wastewaters in UASB reactors. J. Ferment. Bioeng. 77, 679-686.
Kato, M.T., Field, J.A., Lettinga, G. 1997. The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Sci. Technol. 36, 375-382.
Karhadkar, P.P., Audic, J.M., Faup, G.M., Khanna, P. 1987. Sulfide and sulfate inhibition of methanogenesis. Water Res. 21, 1061-1066.
Khan, A.W., Trottier, T.M., 1978. Effect of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge. Appl. Envir. Microbiol. 35, 1027-1034.
Khanal, S.K., Huang, J.C., 2005. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater. Water Envir. Res. 78, 397-408.
Koster, I.W., Rinzema, A., de Vegt, A.L., Lettinga, G., 1986. Sulfate inhibition of the methanogenic activity of granular sludge at different pH levels. Water Res. 12, 1561-1567.
Lens, P.N.L., Visser, A., Janssen, A.J.H., Hulshoff Pol, L. W., Lettinga G., 1998. Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews in Envir. Sci. and Technol. 28, 41-88.
Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., Klapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22, 699-734.
Lettinga, G., Field, J., van Lier, J., Zeeman, G., Hulshoff Pol, L.W. 1997. Advanced anaerobic treatment in near future. Water Sci. Technol. 35, 5-12.
Levenspiel, O., 1980. The Monod eguation: a revisit and a generalization to product inhibition situations. Biotechnol. Bioeng. 22, 1671-1687.
Li, Y.Y., Lam, S., Fang, H.P., 1996. Interaction between methanogenic sulfate-reducing and syntrophic acetogenic bacteria in the anaerobic degradation of benzoate. Water Res. 30, 1555-1562.
Lin, C.Y., Chang, C.H., Chang, F.Y., 1999. Sensitivity of anaerobic sludge biogranule to sulfur compounds. Biotechnol. Letters 21, 421-423.
MacLeod, F.M., Guiot, S.R., Costerton, J.W. 1990. Layered structure of bacterial aggregate produced in an upflow anaerobic sludge bed and filter reactor. Appl. Envir. Microbiol. 56, 1598-1607.
Maillacheruvu, K.Y., Parkin, G.F., Peng, C.Y., Kuo, W.C., Oonge, Z.I., Lebduschka, V., 1993. Sulfide toxicity in anaerobic systems fed sulfate and various organics. Water Envir. Res. 65, 100-109.
McCartney, D.M., Oleszkiewicz, J.A., 1991. Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res. 25, 203-209.
McCartney, D.M., Oleszkiewicz, J.A., 1993. Competition between methanogens and sulfate reducers: effect of COD:sulfate ratio and acclimation. Water Envir. Res. 65, 655-664.
Muñoz, M.A., Sanchez,J.M., Rodriguez-Maroto, J.M., Borrego, J.J., Moriñigo, M.A. 1997. Methane production in anaerobic sludges supplemented with two support materials and different levels of acetate and sulphate. Water Res. 31, 1236-1242.
Núñez, L.A., Martínez, B. 1999. Anaerobic treatment of slaughterhouse wastewater in an expanded granular sludge bed (EGSB) reactor. Water Sci. Technol. 40, 99-106.
Oleszkiewicz, J.A., Romanek, A. 1989. Granulation in anaerobic sludge bed reactors treating food industry wastes. Biological Wastes. 27, 216-235.
Oliva, L.C.H.V., Zaiat, M., Foresti, E., 1995. Anaerobic reactors for food processing wastewater treatment: established technology and new developments. Water Sci. Tech. 32, 157-163.
Omil, F., Lens, P., Hulshoff, L.P., Lettinga, G. 1996. Effect of upward velocity and sulfide concentration on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Process Biochem. 31, 699-710.
Omil, F., Lens, P., Pol, L.W.H., Lettinga, G., 1997. Characterization of biomass from a sulfidogenic, volatile fatty acid-degrading granular sludge reactor. Enzyme and, Microbial Technol. 20, 229-236.
Oude, E., Stefanie, J.W.H., Visser, A., Hulshoff Pol, L.W., Stams, A.J.M., 1994. Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Reviews, 15, 119-136.
Owen, W.F., Stuckey, D.C., Healy, D.C., Young, L.Y., McCarty, P. L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485-492.
Parkin, G.F., Speece, R.E., 1983. Attached versus suspended growth anaerobic reactors: response to toxic substance. Water Sci. Technol. 15, 261-289.
Parkin, G.F., Owen, W.F. 1986. Fundamentals of anaerobic digestion of wastewaster sludges. J. Envir. Eng. (ASCE) 112, 867-920.
Peng, D.C., Zhang, X.W., Jin, Q.T., Xiang, L.K., Zhang, D. 1994. Effects of the seed sludge on the performance of UASB reactors for treatment of toxic wastewater. J. Chem. Technol. Biotechnol. 60, 171-176.
Pereira, M.A., Mota, M., Alves, M.M. 2002. Operation of an anaerobic filter and an EGSB reactor for the treatment of an oleic acid-based effluent: influence of inoculum quality. Process Biochem. 37, 1025-1031.
Pol, L.W.H., Lens, P.N.L., Stams A.J.M., Lettinga, G. 1998. Anaerobic treatment of sulfate-rich wastewaters. Biodegradation 9, 213-224.
Rebac, S., van Lier, J.B., Janssen, M.G.J., Dekkers, F., Swinkels, K.T.M., Lettinga, G. 1997. High-rate anaerobic treatment of malting waste water in a pilot-scale EGSB system under psychrophilic conditions. J. Chem. Technol. Biotechnol. 68, 135-146.
Richard, M.D., Freda, R.H., Dennis, L.H. 2000. Anaerobic digestion of short chain organic acids in all expanded granular sludge bed reactor. Water Res. 34, 2433-2438.
Rittmann, R.E., McCarty, P.L. 1980. Model of steady-state-biofilm kinetics. Biotechnol. Bioeng. 22, 2343-2357.
Schmidt, J.E., Ahring, B.K. 1991. Acetate and hydrogen metabolism in intact and disintegrated granules from an acetate-fed, 55℃, UASB reactor. Appl. Microbiol. Biotechnol. 35, 681-685.
Schmidt, J.E., Ahring, B.K. 1993. Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors. Enzyme Microbiol. Technol. 15, 304-310.
Schmidt, J.E., Ahring, B.K. 1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol. 42, 457-462.
Schmidt, J.E., Ahring, B.K. 1996. Granule sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 49, 229-246.
Shin, H.S., Jung, J.Y., Bae, B.U., Paik, B.C., 1995. Phase-separated anaerobic toxicity assays for sulfate and sulfide. Water Envir. Res. 67, 802-806.
Smul, A.de, Goethals, L., Verstraete, W., 1999. Effect COD to sulphate ratio and temperature in expanded-granule-sludge-blanket reactors for sulphate reduction. Process Biochemi. 34, 407-416.
Stephenson, R.J., Branion, R.M.R., Pinder, K.L., 1994. Anaerobic 35℃ and 55℃ treatment of BCTMP/TMP effluent: sulfur management strategies. Water Sci. Technol. 29, 433-445.
Sponza, D.T. 2002. Simultaneous granulation, biomass retainment and carbon tetrachloride (CT) removal in an upflow anaerobic sludge blanket (UASB) reactor. Process Biochem. 37, 1091-1101.
Uberoi, V., Bhattacharya, S.K., 1995. Interactions among sulfate reducers, acetogens, and methanogens in anaerobic propionate systems. Water Envir. Res. 67, 330.
van Lier, J.B., Martin, L.L.S., Lettinga, G. 1996. Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Water Res. 30, 199-207.
van Lier, J.B., Rabac, S., Lens, P., van Bijnen, F., Oude Elferink, S.J.W.H., Stams, A.J.M., Lettinga, G. 1997. Anaerobic treatment of partly acidified wastewater in a two-stage expanded granular sludge bed (EGSB) system at 8℃. Water Sci. Technol. 36, 317-324.
Vallero, M.V.G., Treviño, R.H.M., Paulo, P.L., Lettinga, G., Lens, P.N.L. 2003. Effect of sulfate on methanol degradation in thermophilic (55℃) methanogenic UASB reactors. Enzyme and Microbial Technol. 32, 676-687.
Visser, A., Hulshoff, L.W.P., Lettinga, G. 1996. Competition of methanogenic and sulfidogenic bacteria. Water Sci. Technol. 33, 99-110.
Vossoughi, M., Shakeri, M., Alemzadeh, I. 2003. Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO42- ratios. Chem. Eng. Process 42, 811-816.
Weijma, J., Chi, T.M., Pol, L.W.H., Stams, A.J.M., Lettinga G., 2003. The effect of sulphate on methanol conversion in mesophilic upflow anaerobic sludge bed reactors. Process Biochem. 38, 1259-1266.
Wen, T.C., Cheng, S.S., Lay, J.J. 1994. A kinetic model of a recirculated upflow anaerobic sludge blanket treating phenolic wastewater. Water Envir. Res. 66, 794-799.
Williamson, K., McCarty, P.L. 1976. A model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 48, 9-24.
Wiemann, M., Schenk, H., Hegemann, W. 1998. Anaerobic treatment of tannery wastewater with simultaneous sulfide elimination. Water Res. 32, 774-780.
Wu, C.S., Huang, J.S. 1996. Bioparticle characteristics of tapered anaerobic fluidized-bed bioreactors. Water Res. 30, 233-241.
Wu, J.H., Liu, W.T., Tseng, I.C., Cheng, S.S. 2001. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiol. 147, 373-382.
Wu, M.M., Criddle, C.S., Hickey, R.F. 1995. Mass transfer and temperature effects on substrate utilization in brewery granules. Biotechnol. Bioeng. 46, 465-475.
Wu, M.M., Hickey, R.F. 1997. Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion. J. Envir. Eng. (ASCE) 123, 244-252.
Yamaguchi, T., Harada, H., Hisano, T., Yamazaki, S., Tseng, I., 1999. Process behavior of UASB reactor treating a wastewater containing high strength sulfate. Water Res. 33, 3182-3190.
Yoda, M., Kitagawa, M., Miyaji, Y., 1987. Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. Water Res. 21, 1547-1556.
Yu, H.Q., Fang, H.H.P., Tay, J.H. 2001. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere 44, 31-36.
Zaiat, M., Rodrigues, J.A.D., Foresti, E. 2000. External and internal mass transfer effects in an anaerobic fixed-bed reactor for wastewater treatment. Process Biochem. 35, 943-949.
Zhou, G.M., Fang, H.H.P., 1998. Competition between methanogenesis and sulfidogenesis in anaerobic wastewater treatment. Water Sci. Technol. 38, 317-324.
Zoutberg, G.R., de Been, P. 1997. The BIOBED® EGSB (expanded granular sludge bed) system covers shortcomings of the upflow anaerobic sludge blanket reactor in the chemical industry. Water Sci. Technol. 35, 183-188.
Zoutberg, G.R., Frankin, R. 1996. Anaerobic treatment of chemical and brewery wastewater with a new type of anaerobic reactor; the BIOBED® EGSB reactor. Water Sci. Technol. 34, 375-381.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top