|  | 
Alphenaar, A., Lettinga, G. 1993. Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Process Biochem. 28, 527-537.Alphenaar, P.A., Pérez, M.C., Lettinga, G. 1993. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules. Appl. Microbiol. Biotechnol. 39, 276-280.
 Alphenaar, P.A., Visser, A., Lettinga, G. 1993. The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a hight sulfate content. Bioresoure Technol. 43, 249-258.
 Annachhatre, A.P., Suktrakoolvait, S., 2001. Biological sulfate reduction using molasses as a carbon source. Water Res. 73, 118-126.
 Arcand, Y., Guiot, S.R., Desrochers, M., Chavarie, C. 1994. Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. Chem. Eng. J. 56, B23-B35.
 Bhattacharya, S.K., Uberoi, V. Dronamraju, M.M. 1996. Interaction between acetate fed sulfate reducers and methanogens. Water Res. 30, 2239-2246.
 Buisman, C.J.N., Lettinga, G., Paasschens, C.W.M., Habets, L.H.A. 1991. Biotechnological sulfide removal from effluents. Water Sci. Technol. 24, 347-356.
 Choi, E., Rim, J.M., 1991. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci. Technol. 23, 1259-1264.
 Chou, H.H., Huang, J.S. 2004. Temperature dependency of granule characteristics and kinetic behavior in UASB reactors. J. Chem. Technol. Biotechnol. 79, 797-808.
 Chou, H.H., Huang, J.S. 2005. Comparative granule characteristics and biokinetics of sucrose-fed and phenol-fed UASB reactor. Chemosphere 59, 107-116.
 Christiansen, P., Hollesen, L., Harremoes, P. 1995. Liquid film diffusion on reaction rate in submerged biofilters. Water Res. 29, 947-952.
 de Man, A.W.A., van der Last, A.R.M., Lettinga, G. 1988. The use of EGSB and UASB anaerobic systems for low strength soluble and complex wastewaters at temperatures ranging from 8 to 30℃. Adv. Water Pollut. 5, 197-209.
 de Smul, A., Goethals, L., Verstraete, W. 1999. Effect of COD to sulfate ratio and temperature in expanded-granular-sludge-blanket reactors for sulfate reduction. Process Biochem. 34, 407-416.
 Dries, J., de Sumul, A., Goethals, L., Grootaerd, H., Verstraete, W. 1998. High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation 9, 103-111.
 Dolfing, J. 1985. Kinetics of methane formation by granular sludge at low substrate concentration, the influence of mass transfer limitation. Appl. Microbiol. Biotechnol. 22, 77-81.
 Esposito, G.., Weijma, J., Pirozzi, F., Lens, P.N.L., 2003. Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor. Process Biochem. 39, 491-498.
 Fang, H. H. P., Chen, T., Li, Y. Y., Chui, H. K. 1996. Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Water Res. 30, 1353-1360.
 Fang, H.H.P., Chung, D.W.C. 1999. Anaerobic treatment of proteinaceous wastewater under mesophilic and thermophilic conditions. Water Sci. Technol. 40, 77-84.
 Genschow, E., Hegemann, W., Maschke, C. 1996. Biological sulfate removal from tannery wastewater in a two-stage anaerobic treatment. Water Res. 30, 2072-2078.
 Ghangrekar, M.M., Asolekar, S.R., Joshi, S.G. 2005. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Res. 39, 1123-1133.
 Grotenhuis, J.T.C., Plugge, C.M., Stams, A.J.M., Zehnder, A.J.B. 1991. Role of substrate concentration in particle size distribution of methanogenic granular in UASB reactors. Water Res. 25, 21-27.
 Guiot, S.R., Arcand, Y., Charie, C. 1992. Advantage of fluidization on granule size and activity development in upflow anaerobic sludge bed reactors. Water Sci. Technol. 26, 897-906.
 Harada, H., Vemura, S., Momonoi, K. 1994. Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res. 28, 355-367.
 Huang, J.S., Her, J.J., Jih, C.G.., 1998., Kinetics of denitritification and denitratification in anoxic filters. Biotechnol. Bioeng. 59, 52-61.
 Huang, J.S., Jih, C.G., Lin, S.D., Ting, W.H. 2003. Process kinetics of UASB reactors treating non-inhibitory substrate. J. Chem. Technol. Biotechnol. 78, 762-772.
 Isa, Z., Grusenmeyer, S., Verstraete, W., 1986. Sulfate reduction relative to methane production in high-rate anaerobic digestion: Microbiological aspects. Appl. Envir. Microbiol. 51, 580-587.
 Jeison, D., Chamy, R. 1999. Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment. Water Sci. Technol. 40, 91-97.
 Kalyuzhnyi, S.V., Fedorovich, V.V., 1998. Mathematical modeling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresource Technol. 65, 227-242.
 Kato, M.T., Field, J.A., Kleerebezem, R., Lettinga, G. 1994. Treatment of low strength soluble wastewaters in UASB reactors. J. Ferment. Bioeng. 77, 679-686.
 Kato, M.T., Field, J.A., Lettinga, G. 1997. The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Sci. Technol. 36, 375-382.
 Karhadkar, P.P., Audic, J.M., Faup, G.M., Khanna, P. 1987. Sulfide and sulfate inhibition of methanogenesis. Water Res. 21, 1061-1066.
 Khan, A.W., Trottier, T.M., 1978. Effect of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge. Appl. Envir. Microbiol. 35, 1027-1034.
 Khanal, S.K., Huang, J.C., 2005. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater. Water Envir. Res. 78, 397-408.
 Koster, I.W., Rinzema, A., de Vegt, A.L., Lettinga, G., 1986. Sulfate inhibition of the methanogenic activity of granular sludge at different pH levels. Water Res. 12, 1561-1567.
 Lens, P.N.L., Visser, A., Janssen, A.J.H., Hulshoff Pol, L. W., Lettinga G., 1998. Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews in Envir. Sci. and Technol. 28, 41-88.
 Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., Klapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22, 699-734.
 Lettinga, G., Field, J., van Lier, J., Zeeman, G., Hulshoff Pol, L.W. 1997. Advanced anaerobic treatment in near future. Water Sci. Technol. 35, 5-12.
 Levenspiel, O., 1980. The Monod eguation: a revisit and a generalization to product inhibition situations. Biotechnol. Bioeng. 22, 1671-1687.
 Li, Y.Y., Lam, S., Fang, H.P., 1996. Interaction between methanogenic sulfate-reducing and syntrophic acetogenic bacteria in the anaerobic degradation of benzoate. Water Res. 30, 1555-1562.
 Lin, C.Y., Chang, C.H., Chang, F.Y., 1999. Sensitivity of anaerobic sludge biogranule to sulfur compounds. Biotechnol. Letters 21, 421-423.
 MacLeod, F.M., Guiot, S.R., Costerton, J.W. 1990. Layered structure of bacterial aggregate produced in an upflow anaerobic sludge bed and filter reactor. Appl. Envir. Microbiol. 56, 1598-1607.
 Maillacheruvu, K.Y., Parkin, G.F., Peng, C.Y., Kuo, W.C., Oonge, Z.I., Lebduschka, V., 1993. Sulfide toxicity in anaerobic systems fed sulfate and various organics. Water Envir. Res. 65, 100-109.
 McCartney, D.M., Oleszkiewicz, J.A., 1991. Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res. 25, 203-209.
 McCartney, D.M., Oleszkiewicz, J.A., 1993. Competition between methanogens and sulfate reducers: effect of COD:sulfate ratio and acclimation. Water Envir. Res. 65, 655-664.
 Muñoz, M.A., Sanchez,J.M., Rodriguez-Maroto, J.M., Borrego, J.J., Moriñigo, M.A. 1997. Methane production in anaerobic sludges supplemented with two support materials and different levels of acetate and sulphate. Water Res. 31, 1236-1242.
 Núñez, L.A., Martínez, B. 1999. Anaerobic treatment of slaughterhouse wastewater in an expanded granular sludge bed (EGSB) reactor. Water Sci. Technol. 40, 99-106.
 Oleszkiewicz, J.A., Romanek, A. 1989. Granulation in anaerobic sludge bed reactors treating food industry wastes. Biological Wastes. 27, 216-235.
 Oliva, L.C.H.V., Zaiat, M.,  Foresti, E., 1995. Anaerobic reactors for food processing wastewater treatment: established technology and new developments. Water Sci. Tech. 32, 157-163.
 Omil, F., Lens, P., Hulshoff, L.P., Lettinga, G. 1996. Effect of upward velocity and sulfide concentration on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Process Biochem. 31, 699-710.
 Omil, F., Lens, P., Pol, L.W.H., Lettinga, G., 1997. Characterization of biomass from a sulfidogenic, volatile fatty acid-degrading granular sludge reactor. Enzyme and, Microbial Technol. 20, 229-236.
 Oude, E., Stefanie, J.W.H., Visser, A., Hulshoff Pol, L.W., Stams, A.J.M., 1994. Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Reviews, 15, 119-136.
 Owen, W.F., Stuckey, D.C., Healy, D.C., Young, L.Y., McCarty, P. L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485-492.
 Parkin, G.F., Speece, R.E., 1983. Attached versus suspended growth anaerobic reactors: response to toxic substance. Water Sci. Technol. 15, 261-289.
 Parkin, G.F., Owen, W.F. 1986. Fundamentals of anaerobic digestion of wastewaster sludges. J. Envir. Eng. (ASCE) 112, 867-920.
 Peng, D.C., Zhang, X.W., Jin, Q.T., Xiang, L.K., Zhang, D. 1994. Effects of the seed sludge on the performance of UASB reactors for treatment of toxic wastewater. J. Chem. Technol. Biotechnol. 60, 171-176.
 Pereira, M.A., Mota, M., Alves, M.M. 2002. Operation of an anaerobic filter and an EGSB reactor for the treatment of an oleic acid-based effluent: influence of inoculum quality. Process Biochem. 37, 1025-1031.
 Pol, L.W.H., Lens, P.N.L., Stams A.J.M., Lettinga, G. 1998. Anaerobic treatment of sulfate-rich wastewaters. Biodegradation 9, 213-224.
 Rebac, S., van Lier, J.B., Janssen, M.G.J., Dekkers, F., Swinkels, K.T.M., Lettinga, G. 1997. High-rate anaerobic treatment of malting waste water in a pilot-scale EGSB system under psychrophilic conditions. J. Chem. Technol. Biotechnol. 68, 135-146.
 Richard, M.D., Freda, R.H., Dennis, L.H. 2000. Anaerobic digestion of short chain organic acids in all expanded granular sludge bed reactor. Water Res. 34, 2433-2438.
 Rittmann, R.E., McCarty, P.L. 1980. Model of steady-state-biofilm kinetics. Biotechnol. Bioeng. 22, 2343-2357.
 Schmidt, J.E., Ahring, B.K. 1991. Acetate and hydrogen metabolism in intact and disintegrated granules from an acetate-fed, 55℃, UASB reactor. Appl. Microbiol. Biotechnol. 35, 681-685.
 Schmidt, J.E., Ahring, B.K. 1993. Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors. Enzyme Microbiol. Technol. 15, 304-310.
 Schmidt, J.E., Ahring, B.K. 1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol. 42, 457-462.
 Schmidt, J.E., Ahring, B.K. 1996. Granule sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 49, 229-246.
 Shin, H.S., Jung, J.Y., Bae, B.U., Paik, B.C., 1995. Phase-separated anaerobic toxicity assays for sulfate and sulfide. Water Envir. Res. 67, 802-806.
 Smul, A.de, Goethals, L., Verstraete, W., 1999. Effect COD to sulphate ratio and temperature in expanded-granule-sludge-blanket reactors for sulphate reduction. Process Biochemi. 34, 407-416.
 Stephenson, R.J., Branion, R.M.R., Pinder, K.L., 1994. Anaerobic 35℃ and 55℃ treatment of BCTMP/TMP effluent: sulfur management strategies. Water Sci. Technol. 29, 433-445.
 Sponza, D.T. 2002. Simultaneous granulation, biomass retainment and carbon tetrachloride (CT) removal in an upflow anaerobic sludge blanket (UASB) reactor. Process Biochem. 37, 1091-1101.
 Uberoi, V., Bhattacharya, S.K., 1995. Interactions among sulfate reducers, acetogens, and methanogens in anaerobic propionate systems. Water Envir. Res. 67, 330.
 van Lier, J.B., Martin, L.L.S., Lettinga, G. 1996. Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Water Res. 30, 199-207.
 van Lier, J.B., Rabac, S., Lens, P., van Bijnen, F., Oude Elferink, S.J.W.H., Stams, A.J.M., Lettinga, G. 1997. Anaerobic treatment of partly acidified wastewater in a two-stage expanded granular sludge bed (EGSB) system at 8℃. Water Sci. Technol. 36, 317-324.
 Vallero, M.V.G., Treviño, R.H.M., Paulo, P.L., Lettinga, G., Lens, P.N.L. 2003. Effect of sulfate on methanol degradation in thermophilic (55℃) methanogenic UASB reactors. Enzyme and Microbial Technol. 32, 676-687.
 Visser, A., Hulshoff, L.W.P., Lettinga, G. 1996. Competition of methanogenic and sulfidogenic bacteria. Water Sci. Technol. 33, 99-110.
 Vossoughi, M., Shakeri, M., Alemzadeh, I. 2003. Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO42- ratios. Chem. Eng. Process 42, 811-816.
 Weijma, J., Chi, T.M., Pol, L.W.H., Stams, A.J.M., Lettinga G., 2003. The effect of sulphate on methanol conversion in mesophilic upflow anaerobic sludge bed reactors. Process Biochem. 38, 1259-1266.
 Wen, T.C., Cheng, S.S., Lay, J.J. 1994. A kinetic model of a recirculated upflow anaerobic sludge blanket treating phenolic wastewater. Water Envir. Res. 66, 794-799.
 Williamson, K., McCarty, P.L. 1976. A model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 48, 9-24.
 Wiemann, M., Schenk, H., Hegemann, W. 1998. Anaerobic treatment of tannery wastewater with simultaneous sulfide elimination. Water Res. 32, 774-780.
 Wu, C.S., Huang, J.S. 1996. Bioparticle characteristics of tapered anaerobic fluidized-bed bioreactors. Water Res. 30, 233-241.
 Wu, J.H., Liu, W.T., Tseng, I.C., Cheng, S.S. 2001. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiol. 147, 373-382.
 Wu, M.M., Criddle, C.S., Hickey, R.F. 1995. Mass transfer and temperature effects on substrate utilization in brewery granules. Biotechnol. Bioeng. 46, 465-475.
 Wu, M.M., Hickey, R.F. 1997. Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion. J. Envir. Eng. (ASCE) 123, 244-252.
 Yamaguchi, T., Harada, H., Hisano, T., Yamazaki, S., Tseng, I., 1999. Process behavior of UASB reactor treating a wastewater containing high strength sulfate. Water Res. 33, 3182-3190.
 Yoda, M., Kitagawa, M., Miyaji, Y., 1987. Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. Water Res. 21, 1547-1556.
 Yu, H.Q., Fang, H.H.P., Tay, J.H. 2001. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere 44, 31-36.
 Zaiat, M., Rodrigues, J.A.D., Foresti, E. 2000. External and internal mass transfer effects in an anaerobic fixed-bed reactor for wastewater treatment. Process Biochem. 35, 943-949.
 Zhou, G.M., Fang, H.H.P., 1998. Competition between methanogenesis and sulfidogenesis in anaerobic wastewater treatment. Water Sci. Technol. 38, 317-324.
 Zoutberg, G.R., de Been, P. 1997. The BIOBED® EGSB (expanded granular sludge bed) system covers shortcomings of the upflow anaerobic sludge blanket reactor in the chemical industry. Water Sci. Technol. 35, 183-188.
 Zoutberg, G.R., Frankin, R. 1996. Anaerobic treatment of chemical and brewery wastewater with a new type of anaerobic reactor; the BIOBED® EGSB reactor. Water Sci. Technol. 34, 375-381.
 
 |