跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾勇霖
研究生(外文):Cheng, Yung-Ling
論文名稱:非勻相催化臭氧分解藻類代謝物之研究
論文名稱(外文):Degradation of algal metabolites using heterogeneous catalytic ozonation processes
指導教授:黃文鑑黃文鑑引用關係
指導教授(外文):Huang, Winn-Jung
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:126
中文關鍵詞:非勻相催化臭氧臭氧二氧化鈦2-MIB藻類
外文關鍵詞:heterogeneous catalytic ozonationozonetitanium dioxide2-MIBalgae
相關次數:
  • 被引用被引用:6
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
臭氧(O3)在水處理單元之中屬於高氧化力及消毒能力的氧化劑,然而現階段淨水程序在使用臭氧時,因其高操作成本及可能生成消毒副產物的考量及臭氧本身在水相的低溶解性,因此在添加劑量上無法在高濃度下操作,若水中含有難分解有機物,在目前水廠的臭氧施加劑量及接觸時間,可能無法將其破壞去除。有鑑於此,本研究利用非勻相催化O3方法,在O3反應系統添加TiO2觸媒,藉此提高反應產生的自由基,增加氧化污染物的能力。實驗對象是取優養化水源常見的藻類代謝臭味物質2-MIB,利用配製人工原水及採取實際優養化水庫原水進行試驗,O3及O3/TiO2的反應系統是採批式、半批式及連續流式等操作條件進行。實驗結果顯示臭氧在TiO2的催化條件下,對2-MIB的氧化分解速率及效率均明顯高於單獨臭氧者,在本實驗控制的各項水質及操作條件下,平均約提高20~30% 2-MIB分解率。實驗中利用電子順磁共振儀(EPR)量測O3及O3/TiO2系統生成之OH.自由基亦發現O3/TiO2明顯高於單獨O3系統,此結果直接證實TiO2有促進O3產生自由基之催化功能。再者,利用半批式反應槽氧化2-MIB之實驗結果顯示,在O3/TiO2系統下,低O3劑量對2-MIB即可達近85%以上分解效率,且在高pH值條件下效果較佳。針對連續流的反應系統,本實驗利用電弧離子鍍將TiO2鍍膜在陶瓷環上,並將其填充至反應槽中,進行O3及水樣連續通入反應,結果顯示對實際優養化原水中之2-MIB去除效率,O3/TiO2明顯高於單獨O3者,且反應過程之耗臭氧量亦以O3/TiO2較低。另分析原水之葉綠素-a,發現O3/TiO2系統支出流水含較低濃度,間接顯示O3/TiO2對藻細胞具有較強破壞力。綜整本研究結果,顯見TiO2觸媒在O3氧化2-MIB之反應過程具有增強氧化力功能,並在低O3劑量下即有顯著效率,同時其消耗臭氧量並未因TiO2催化生成更多自由基而增加。
Abstract
Ozone, due its high oxidation and disinfection potential, has recently received much attention in water treatment technology. Despite several advantages of using ozone, it has a few disadvantages, which limit its application in water treatment technology. The main are relatively low solubility and stability in water. Because of both the high cost of ozone production and only partial oxidation of organic compounds present in water, the application of ozonation might not be feasible from an economic point of view. The objective of this study was to evaluate the heterogeneous catalytic ozonation process in mitigating the taste and odor causing compounds - 2-MIB. The surface water samples were collected from eutrophic reservoirs. Furthermore, the synthetic waters that matrix take from ground water and adding appropriate concentration of 2-MIB was also test in this study. The reaction types including batch, semi-batch and continuous flow reaction, respectively. The titanium dioxide (TiO2) was applied for catalyst in this work. Experimentally, it was found that combined use of O3 and TiO2 catalyst leads to a conspicuous 99% of 2-MIB degradation which compares favorably to the 20~30% obtained more than in the absence of the TiO2 catalyst. The electron paramagnetic resonance (EPR) was used to detect ozone-produced paramagnetic radicals. The experimental EPR spectra verified that more hydroxyl radicals (OH.) generated in the TiO2 catalytic ozonation process. In this system, elevated concentrations of OH. radical produced by the reaction of ozone with catalyst at the solid-liquid interface, is the main cause responsible for the improvement of ozonation induced by the presence of catalyst. At the constant dosage of TiO2 in the semi-batch tests, 2-MIB conversion rate can be approach to 85%, especially in the high pH conditions. In the continuous flow reactor which packing Raschig ring matrix (coating TiO2 films on the surface using Arc ion plating method), 2-MIB degradation rates was obvious high than ozone only reaction system. It was also found that the chlorophyll-a content in the O3/TiO2 effluent was lower than ozone only system, indicated that the high reactivity of OH. radicals were generated by O3/TiO2 during the oxidation process that effectively degraded algal cells and 2-MIB.
目錄
誌謝 I
摘要 II
Abstract IV
目 錄 VI
表 目 錄 IX
圖 目 錄 XI
第一章 前言 1
第二章 文獻回顧 3
2-1優養化原水之藻類分佈及可能代謝物 3
2-2優養化原水中藻類的去除方法 10
2-3臭氧在淨水程序的應用 13
2-3-1結合O3之高級氧化程序 14
2-3-2臭氧在水處理之應用 20
2-4催化臭氧程序在淨水程序的應用 24
2-4-1勻相催化臭氧程序(homogeneous catalytic ozonation) 24
2-4-2非勻相催化臭氧程序(heterogeneous catalytic ozonation) 27
第三章 實驗設備與方法 30
3-1實驗流程 30
3-2材料與設備 32
3-2-1粉末二氧化鈦(Titanium Dioxide, TiO2) 32
3-2-2二氧化鈦鍍膜於陶瓷拉西環之性質分析 36
3-2-3霉臭味物質2-MIB 41
3-2-4臭氧(Ozone) 42
3-3實驗操作步驟 44
3-3-1批式反應 44
3-3-2半批式反應(Semi-Batch Reactor) 45
3-3-3連續流填充式反應槽(Continuous Flow Packing-Reactor) 46
3-4分析方法 48
3-4-1氣相臭氧濃度分析 48
3-4-2液相臭氧濃度分析 49
3-4-3 2-MIB分析方法 50
3-4-4 場發射電子顯微鏡(FE-SEM)及X光能量散譜儀(EDS) 54
3-4-5小角度X光繞射儀(SAXS)分析 55
3-4-6電子順磁共振儀(EPR)分析 55
3-4-7一般水質分析 57
第四章 結果與討論 65
4-1 非勻相催化臭氧分解2-MIB之反應動力分析 65
4-2 O3/TiO2程序對2-MIB分解效率之半批式反應試驗 76
4-3 連續流式催化臭氧反應槽對2-MIB分解效率之試驗結果 87
第五章 結論與建議 114
參 考 文 獻 117

表目錄
表2-1-1藻類的分類及特徵 8
表2-1-2卡爾森優養化指數之計算方式 9
表2-3-1臭氧物理化學性質 19
表3-2-1二氧化鈦種類 32
表3-2-2本實驗選用之二氧化鈦基本物化性質 33
表3-2-3拉西環元素組成份 36
表3-4-1 Purge&Trap分析條件 51
表3-4-2 GC/MS分析條件 52
表3-4-3 EPR分析條件 56
表4-1-1 O3及O3/TiO2程序分解2-MIB之擬一階反應速率常數k(min-1)值比較表 69
表4-1-2 O3及O3/TiO2程序分解2-MIB之臭氧衰減速率常數k(min-1)值 69
表4-2-1國內、外應用非勻相催化O3對各污染物之去除效率比較 80
表4-2-2 O3及O3/TiO2半批次反應之擬一階反應速率常數k值比較表 82
表4-3-1地下水基本水質參數 95
表4-3-2三種優養化原水基本水質參數 95
表4-3-3三種優養化原水之卡爾森優養指數(CTSI) 96












圖目錄
圖2-1-1 褐藻細胞壁構造圖 7
圖2-1-2 褐藻細胞組成 7
圖3-1-1實驗流程圖 31
圖3-2-1粉末TiO2顆粒之FE-SEM圖 34
圖3-2-2粉末TiO2顆粒之EDS圖 34
圖3-2-3粉末TiO2顆粒之SAXS圖 35
圖3-2-4未鍍膜TiO2拉西環及EDS分析之元素組成 37
圖3-2-5鍍膜TiO2拉西環及EDS分析之元素組成 38
圖3-2-6拉西環鍍膜前、後之FE-SEM圖 39
圖3-2-7鍍膜及未鍍膜TiO2拉西環之SAXS圖 40
圖3-2-8 2-MIB的結構式及物化特性 41
圖3-2-9臭氧產生機示意圖 42
圖3-2-10臭氧產率與電壓之關係圖 43
圖3-3-1批式反應槽示意圖 44
圖3-3-2半批式反應槽示意圖 45
圖3-3-3連續流填充式反應槽設備 46
圖3-3-4連續流填充式反應槽操作流程圖 47
圖3-4-1 2-MIB之標準層析圖 53
圖3-4-2 2-MIB之標準質譜圖 53
圖3-4-3湯瑪氏血球計 59
圖4-1-1 O3程序在各pH值對2-MIB的反應動力 67
圖4-1-2 O3/TiO2程序在各pH值對2-MIB的反應動力 67
圖4-1-3 O3在O3程序中不同pH值下之消耗速率 68
圖4-1-4 O3在O3/TiO2程序中不同pH值下之消耗速率 68
圖4-1-5 DMPO之EPR圖譜 72
圖4-1-6粉末TiO2之EPR圖譜 72
圖4-1-7液相 O3之EPR圖譜 73
圖4-1-8 O3/TiO2之EPR圖譜 73
圖4-1-9 液相O3之EPR圖譜 74
圖4-1-10 O3/TiO2之EPR圖譜 75
圖4-2-1 不同半批式反應對於2-MIB去除率 77
圖4-2-2 不同半批式反應分解2-MIB之擬ㄧ階反應速率 77
圖4-2-3半批式反應於pH=5.0條件下對2-MIB分解效率 81
圖4-2-4半批式反應於pH=7.0條件下對2-MIB分解效率 81
圖4-2-5半批式反應於pH=10條件下對2-MIB分解效率 82
圖4-2-6低臭氧劑量(2.40 mg/min)半批式反應 83
圖4-2-7高臭氧劑量(22.17 mg/min)半批式反應 84
圖4-2-8低臭氧劑量(2.40 mg/min)半批式反應 85
圖4-2-9高臭氧劑量(22.17 mg/min)半批式反應 86
圖4-3-1連續式臭氧反應於不同pH條件下對2-MIB之分解效率 89
圖4-3-2連續式臭氧反應於不同pH條件下液相O3濃度消耗情形 89
圖4-3-3連續式臭氧反應於不同pH條件下溶解性有機碳(DOC)變化情形 90
圖4-3-4連續式臭氧反應於不同pH條件下鹼度(Alkalinity)變化情形 91
圖4-3-5 LYL原水藻種分佈FE-SEM圖 93
圖4-3-6 RIL及LL原水藻種分佈FE-SEM圖 94
圖4-3-7原水中2-MIB之去除率比較 100
圖4-3-8連續式O3及O3/TiO2反應對於原水中2-MIB之分解效率比較 101
圖4-3-9原水於反應過程中O3消耗情形 102
圖4-3-10連續式O3及O3/TiO2反應過程中,O3消耗之情形 103
圖4-3-11連續式O3及O3/TiO2反應過程中pH值之變化情形 104
圖4-3-12連續式O3及O3/TiO2反應過程中鹼度之變化情形 105
圖4-3-13連續式O3及O3/TiO2反應過程中葉綠素-a變化情形 106
圖4-3-14連續式O3及O3/TiO2反應過程中DOC變化情形 107
圖4-3-15連續式O3及O3/TiO2反應過程中K+離子變化情形 109
圖4-3-16連續式O3及O3/TiO2反應過程前、後LYL藻體細胞變化情形 110
圖4-3-17連續式O3及O3/TiO2反應過程前、後RIL藻體細胞變化情形 111
圖4-3-18連續式O3及O3/TiO2反應過程前、後LL藻體細胞變化情形 112
圖4-3-19連續式O3及O3/TiO2反應過程中BrO3-變化情形 113
參考文獻
Alsheyab, M. A. and Muñoz , A. H., 2006, “Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide (H2O2/O3),” Desalination, Vol. 194, pp. 121–126.
Andreozzi R., Caprio V., Insola A., Marotta R. and Tufano V., 1998, “The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese,” Water Research, Vol. 32, pp. 1492-1496.
Andreozzi R., Caprio V, Marotta, R. and Tufano, V., 2000, "Kinetic. Modeling of Pyruvic Acid Ozonation in Aqueous Solutions. Catalyzed by Mn. II. and Mn. IV. Ions," Wat. Res., Vol. 35, pp. 109-120.
Andreozzi, R., Insola, A., Caprio, V., Marotta, R. and Tufano, V., 1996, "The use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic. Acid Ozonation in Squeous Solution," Appl. Catal. A: General, Vol. 138, pp. 75-81.
Andreozzi, R., Casale, M. S. L., Marotta, R., Pinto, G. and Pollio, A., 2000, “N-methyl-P-aminophenol (METOL) ozonation in aqueous solution: kinetics, mechanism and toxicological characterization of ozonized samples,” Water Research, Vol. 34, pp. 4419-4429.
Becker, W. C. and O’Melia, C. R., 2001, “Ozone:its Effect on Coagulation and Filtration,” Wat. Sci. Tech., WaterSupply, Vol. 1, pp. 81-88.
Bell, R. T., Tandey, M. R. and Borck, T. D., 1973, “Algal Extraction of 14C-Labeled Compound and Microbial Interactions in Cyanidium caldarium Mats,” J. Phycol ., Vol. 9, pp. 123-127.
Beltrán F. J., Rivas F. J. and Ramón Montero-de-Espinosa, 2002, “Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor,” Applied Catalysis B: Environmental, Vol. 39, pp. 221-231.
Beltr'an, F. J., Rivas, F. J., A'lvarez, P. and Montero-de-Espinosa, R., 2002, "Kinetics of Heterogeneous Catalytic Ozone Decomposition in Water in an Activated Carbon," Ozone Sci. Eng., Vol. 24, pp. 227-237.
Beltrán F. J., Rivas F. J. and Ramón Montero-de-Espinosa, 2004, “A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water,” Applied Catalysis B: Environmental, Vol. 47, pp. 101-109.
Berg, K., Carmichael, W. W., Skulberg, O. M., Denestad, C. and Underdal, B., 1987, “Investigation of a Toxic Water-Bloom of Microcystis aeruginosa (Cyanophyceae) in Lake Akersvatn,” Norway. Hydrobiologia, Vol. 144, pp. 97-103.
Bold, H. C. and Wynne, M. J., 1987, Introduction to the algae, Structure and Reproduction. Pretice-Hall, INC. Englewood Cliffs, New Jersey.
Bouck, G. B., 1965, Fine structure and organelle associations in brown algae. J Cell Biol, Vol. 26, 523–537.
Carmichael, W. W. and Gorham, P. R., 1997, “Factors Influencing the Toxicity and Animal Susceptibility of Anabaena flos-aquae(Cyanophyta) Blooms,” J . Phycol ., Vol. 13, pp. 97-101.
Chrost, R. J., Munster, U., Rai, H., Albrecht, D., Witzel, K. and Overbeck, J., 1989, “Photosynthetic Production and Exoenzymatic degradation of Organic Mater in the Euphotic Zone of a Eutrophilic Lake,” Journal of Plankton resrarch., Vol. 11 pp. 223-242.
Croue, J. P., Koudjonou, B. K. and Legube, B., 1996, “Parameters Affecting the formation of bromate ion during ozonation,” Ozone Sci. Eng. Vol. 18, pp. 76-84.
Davis, T. A., Volesky, B. and Mucci, A., 2003, “A review of the biochemistry of heavy metal biosorption by brown algae,” Water Research, Vol. 37, pp. 4311-4330.
Demers, L. D. and Renner, R. C., 1992, “Alternative Disinfection Technologies for Small DrinkingWater Systems, ” AWWARF and AWWA, Denver, CO.
Esplugas, S., Giménez, J., Contreras, S., Pascual, E. and Rodrĭguez, M., 2002, “Comparison of different advanced oxidation processes for phenol degradation,” Water Research, Vol. 36, pp. 1034-1042.
Giri, R. R., Ozaki, H., Ishida, T., Takanami, R. and Taniguchi, S., 2007, “Synergy of ozonation and photocatalysis to mineralize low concentration 2,4-dichlorophenoxyacetic acid in aqueous solution,” Chemosphere, Vol. 66, pp. 1610-1617.
Gracia, R., Aragues, J. L., Cortes, S. and Ovelleiro, J. L., in: Proceedings of the 12th World Congress of the International Ozone Association, Lille, France, 15-18 May, pp. 75, 1995.
Gulkaya, İ., Surucu, G. A. and Dilek, F. B., 2006, “Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater,” Journal of Hazardous Materials B, Vol. 136, pp. 763-769.
Hayes, K. P. and Burch, M. D., 1989, “Odorous Compounds Associated With Algal Blooms in South Australian Waters,” Water Research, Vol. 23, pp. 115-121.
Hsieh, T. C. Y., Williams, S. S., Vejaphan, W. and Meyers, S. P., 1989, “Characterization of Volatile Components of Mahaden Fish (Brevoortia tyrannus),” Oil .J . Amer .Oil Chem., Soc., Vol. 66, pp. 114-117.
Huang, W. J., Fang, G. C. and Wang, C. C., 2005, “A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 260, pp. 45-51.
Jiittner, 1984a, “Characterization of Microcystis Strains by Alkyl Sulfides and β-cyclocitral,” Z. Naturforsch eds., Vol. 39, 867-871.
Kay, R. A., 1989, “Microalgae as Food and Supplement. Critical Reviews in Food.Science,and Nutrition,” Vol. 30, pp. 555-573.
Kenefick, S. L., Hrudey, S. E., Prepas, E. E., Motkosky, N. and Peterson, H.G., 1992, “Odorous Substances and Cyanobacterial Toxins in Prairie Drinking Water,” Wat. Sci. Tech., Vol. 25, pp. 147-154.
Kim, S. C. and Lee, D. K., 2005, “Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water,” Microchemical Journal, Vol. 80, pp. 227-232.
Kurbus, T., Marechal, A. M. L. and Vonc˘ina, D. B., 2003, “Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ processes for the decolorisation of vinylsulphone reactive dyes,” Dyes and Pigments, Vol. 58, pp. 245-252.
Langlais, B., Reckhow, D.A. and Brink (editors), D.R., 1991, Ozone in Drinking Water Treatment: Application and Engineering, AWWARF and Lewis Publishers, Boca Raton, FL.
Latifoglu, A and Gurol, M. D., 2003, “The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes” Water Research, Vol. 37, pp. 1879-1889.
Lau, T.K., Chu, W. and Graham, N., 2007, “Reaction pathways and kinetics of butylated hydroxyanisole with UV, ozonation, and UV/O3 processes” Water Research, Vol. 41, pp. 765-774.
Lee, C., Yoon, J. and Gunten, U. V., 2007, “Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide,” Water Research, Vol. 41, pp. 581-590.
Lee, R.E., 1989, Phycology.2nd ed., New York, Cambridge University Press., Cambridge.
Lin, S. D., 1976, “ Sources of Tastes and Odor in Water,” part l, Water & Sewage Work, Vol. 123, pp. 101-104.
Legube, B. and Karpel Vel Leitner, N., 1999, "Catalytic Ozonation: a Promising Advanced Oxidation Technology for Water Treatment", Catalysis Today, Vol. 53, pp. 61-72.
Ma, J. and Graham, N. J. D., 1997, "Preliminary Investigation of. Manganese-Catalyzed Ozonation for the Destruction of. Atrazine," Ozone Sci. Eng., Vol. 19, pp. 227-240.
Ma, J. and Graham, N. J. D., 1999, "Degradation of Atrazine by Manganese-Catalysed Ozonation: Influence of Humic Substances,"Wat. Res., Vol. 33, pp. 785-793.
Ma, J., and Graham, N. J. D., 2000, "Degradation of Atrazine by Manganese-Catalysed Ozonation: Influence of Radical Scavengers,"Water Res. Vol. 34, pp. 3822-3828.
Morris, J. C., 1975, “Aspects of the Quantitative Assessment of Germicidal Efficiency,” in Chapter 1 J. D. Johnson(Ed.), Water and Wastewater, Ann Arbor, MI.
Martin, J. F., Izaguirre, G. and Waterstrat, P., 1991, “A Planktonic Oscillatoria Species From Mississippi Catfish Ponds That Produces the Off-Flavor Compound 2-methylisoborenol,” Water Research, Vol. 25 pp. 1447-1451.
McCarty, J. J. and Smith, C. H.,1974, “A Revien of Ozone and its Application of Domestic Wastewater Treatment,” Jour. AWWA, Vol. 66, pp. 718-726.
Mouchet, P. and Bonnelye, V., 1998, “ Solving Algae Problems: FrenchExpertise and World-wide Applications, ” J Water SRT-Aqua ,Vol. 47, pp. 125-141.
Ni, C. H. and Chen, J. N., 2001, "Heterogeneous Catalytic Ozonation of 2-Chlorophenol Aqueous Solution with Alumina as a Catalyst," Water Sci. Technol., Vol. 43, pp.213-220.
Peterson, H. G., Hrudey, S. E., Cantin, I. A. and Perley, T. R., 1995, “ Physiological Toxicity ,Cell Membrance Damage and the Release of Dissolved Organic Carbon and Geosmin by Aphanizomenon Flocs-aquae after Explore to Water Ttreatment Chemicals,” Water Research, Vol. 29 pp. 1515-1523.
Pines, D. S., Humayan, R. and Reckhow, D.A., in: Proceedings of the AWWA Congress on Water Quality Technology, San Francisco, USA, 6-10 November, pp. 1483, 1994.
Pines, D. S. and Reckhow, D. A., 2002, "Effect of Dissolved Cobalt(II) on the Ozonation of Oxalic Acid," Environ. Sci. Technol., Vol. 36, pp. 4046-4051.
Qiao, R. P., Li, N., Qi, X. H., Wang, Q. S. and Zhuang, Y. Y., 2005, “Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide,” Toxicon, Vol. 45, pp. 745-752.
Schiewer, S. and Volesky, B., 2000, “Biosorption by marine algae,” In:Valdes JJ, editor. Remediation. Dordrecht, The Netherlands: Kluwer Academic Publishers, p. 139–169.
Shu, H. Y. and Chang, M. C., 2005, “Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process,” Journal of Hazardous Materials B, Vol. 125, pp. 96-101.
Shu, H. Y., Chang, M. C. and Fan, H. J., 2004, “Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters,” Journal of Hazardous Materials B, Vol. 113, pp. 201-208.
Siddiqui, M., Amy, G. L., and Rice, R. Q., 1995, “Bromate Ion Formation: A Critical Review,” Jour. AWWA, Vol. 87 pp. 58-70.
Steynberg, M. C., Guglielmi, M. M., Geldenhuys, J. C. and Pieteres, J. H. 1996a, “Chlorine and Chlorine Dioxide : Pre-oxidants Used as Algocide in Potable Water Plents,” J Water SRT-Aqua, Vol. 45, pp. 162-170.
Suffet, I. H., Anselme, C. and Mallevialle, J., 1986, “Removal of Tastes and Odors by Ozonation,” Conference proceedings, AWWA Seminar on Ozonation: Recent Advances and Research Needs, Denver, CO.
Sukenik, A., Teltch, B., Wachs, A.W., Shelef, G., Nir, I. and Levenon, D., 1987, “Effect of Oxidants on Microalgal Flocculation,” Water Research, Vol. 21, pp. 533-539.
Tong S. P., Liu W. P., Leng W. H. and Zhang Q. Z., 2003, “Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water,” Chemosphere, Vol. 50, pp. 1359-1364.
USEPA., 1999, Alternative Disinfectants and Oxidants Guidance Manual, Office of Water, Washington, DC.
Walling, C., 1975, “ Fenton’s reagent revisited," Acc. Chem. Res., Vol. 8, pp. 125-131.
Yang Y., Ma J. and Qin Q., Zhai X., 2007, “Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation,” Journal of Molecular Catalysis A: Chemical, Vol. 261, pp. 41-48.
鄭百伶,2006,「光催化程序抑制藻類生長及分解代謝臭味物質之研究」,碩士論文,弘光科技大學環境工程研究所。台中縣。
黃淑芳,1989,「認識藻類」,國立臺灣博物館出版。
陳是瑩、曾怡偵, 1984,「澄清湖生態的研究I:澄清湖水質與藻類季節性變遷的研究」。中華民國自來水協會第一屆給水技術研討會論文集。
葉宣顯、鄭幸雄、黃志彬、曾怡禎、林財富,2000,「澄清湖高級淨水處理模型廠試驗研究」。台灣省自來水公司。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊