跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃文生
研究生(外文):Huang, Wen-Sheng
論文名稱:二維彈力問題之充分且必要邊界積分方程法研究
論文名稱(外文):A study on necessary and sufficient BEM/BIEM for two-dimensional elasticity problems
指導教授:陳正宗陳正宗引用關係
指導教授(外文):Chen, Jeng-Tzong
口試委員:洪宏基吳光鐘胡潛濱郭世榮
口試委員(外文):Hong, Hong-KiWu, Kuang-ChongHwu, Chyan-BinKuo, Shyh-Rong
口試日期:2015-06-11
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:106
中文關鍵詞:邊界元素法邊界積分方程法二維彈力問題分離核(退化核)退化尺度剛體模態Fichera 法
外文關鍵詞:boundary element methodboundary integral equation methodtwo-dimensional elasticity problemdegenerate kerneldegenerate scalerigid body modeFichera's method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本文探討使用邊界元素法/邊界積分方程法在解決二維彈力問題時,由於問題的幾何外型在某些特定尺度的時候會使得影響矩陣產生秩降問題,這不同於物理問題上的尺度效應,而是數學方法本身所造成的。針對退化尺度發生的機制,
在離散系統我們透過兩個數值技巧來求得,其一為透過奇異值分解法,逐一搜尋影響係數矩陣之最小奇異值為零時所對應的尺度;其二為將二維彈力的退化尺度問題化簡為二乘二矩陣的特徵值問題。而在連續系統首先回顧Kelvin解在極座標系統下的退化核形式,以及推導在橢圓座標系統下的退化核形式。其次將基本解以分離核形式呈現,邊界密度及邊界條件使用特徵方程表示,透過積分和比較係數後,圓形與橢圓形的退化核尺度即可以被解析的推導而得。此外,我們亦透過分離核解析探討積分方程對唯一解的規範是否充分且必要以及積分運算元值域缺損的問題。針對給定不同類型的邊界條件,我們透過模態參與係數的觀念來探討對應奇異值為零的模態是否容易被激發出來。為了處理解不唯一的問題,藉由處理在二維拉普拉斯因退化尺度所產生的病態問題之成功經驗,我們根據Firchra 法,藉由增加自由常數以及對應束制條件來提升影響係數矩陣的秩數,解決退化尺度問題中解不唯一的情況。此外亦使用Firchra法處理病態矩陣的想法,透過奇異值分解和增邊矩陣,藉由增加自由度及相對應的束制條件,我們推導出秩降矩陣自我正則化方法,並透過自我正則化方法成功解決自由結構之奇異柔度/勁度矩陣。透過增加的自由常數是否為零也可做為判斷結構之給定外力是否滿足力平衡的有解依據。

For solving two-dimensional (2-D) elasticity problems by using the boundary element method (BEM), the special size of geometry results in a rank-deficient matrix, which is different from the size effect in physics. Direct searching technique (singular value decomposition) and the only two-trials technique ( matrix eigenvalue problem) are used to find the numerical solution of degenerate scales, respectively. By using the boundary integral equation method (BIEM), the range deficiency also exists in the degenerate-scale problem. The degenerate kernel for the 2-D elasticity Kelvin solution in the polar coordinates is reviewed first and the degenerate kernel in the elliptical coordinates is derived. By using the indirect BIEM in conjunction with the degenerate kernel, the analytical solutions of degenerate scales for a circle and an ellipse are derived. Besides, the sufficient and necessary condition of ensure unique solution of the boundary integral equation (BIE) is also addressed. The ill-conditioned system is derived from the incomplete integral equation. By using the degenerate kernel, the space-deficiency of solution in the degenerate scale problems for 2-D elasticity is analytically studied. The modal participation factor is used to numerically examine the excited mode corresponding to different types of boundary conditions. According to the experience of the degenerate-scale problems for 2-D Laplace equation, we extend Fichera’s idea to solve the degenerate scale problems for 2-D elasticity by adding a constant and the corresponding constraint. In addition, the rigid body mode results in a rank-deficient matrice also exist in the finite element method. Motivated by Fichera’s idea for regularizing the rank-deficiency model, we derive the self-regularization technique by using the bordered matrix and the singular value decomposition. The self-regularization technique is adopted to solve the free-free structure problems by adding n slack variables and corresponding constraints. The value of the extra degree of freedom can judge no solution (nonzero value) and infinite solution (zero value) with respect to the loading vector.
Contents I
Table captions IV
Figure captions V
Notations IX
Abstract XII
摘要 XIII

Chapter 1 Introduction .................................1
1.1 Motivation of the research and literature review .................................................1
1.2 Organization of the present thesis .........3

Chapter 2 Derivation of the degenerate scales for two-dimensional elasticity problem by using the BEM/BIEM ...7
Summary ........................................7
2.1 Introduction ...............................7
2.2 Problem statement and formulation ..........9
2.2.1 Problem statement ........................9
2.2.2 Boundary integral equation formulation ...9
2.2.3 Expansions of fundamental solution and boundary information ..................................10
2.2.3.1 Review of the Kelvin solution by using the degenerate kernel in terms of the polar coordinates .......................................................10
2.2.3.2 Derivation of the degenerate kernel for the Kelvin solution in terms of the elliptic coordinates .......................................................12
2.2.3.3 Fourier series expansion for boundary information in the circular domain ....................14
2.2.3.4 Eigenfunction expansion for boundary information in the elliptical domain ..................15
2.3 Derivation of analytical degenerate scales by using the degenerate kernels ..........................15
2.3.1 Degenerate scales on the circular domain for a 2-D elasticity problem ..........................15
2.3.2 Degenerate scales on the circular domain for a 2-D elasticity problem ..........................16
2.4 Numerical examination of degenerate scales by using the direct searching technique and only two ordinary trials .......................................18
2.4.1 Direct searching technique to find the degenerate scales ............ 18
2.4.2 Only two-trials to find degenerate scales .......................................................18
2.5 Illustrative examples .....................21
2.6 Concluding remarks ........................23

Chapter 3 A necessary and sufficient BEM/BIEM for two-dimensional elasticity problems ...................36
Summary .......................................36
3.1 Introduction ..............................36
3.2 Problem statement and formulation .........38
3.2.1 Problem statement .......................38
3.2.2 Derivation of the analytical solution for a circular case .........................................39
3.2.3 Derivation of the analytical solution for an elliptical case ....................................40
3.2.4 Regularized method for the degenerate-scale problems ..............................................43
3.2.5 Modal participation factor to examine the numerical instability .................................44
3.3 Illustrative examples and discussions .......................................................45
3.4 Concluding remarks ........................48

Chapter 4 A self-regularization approach for solving the free-free structure problems ..........................59
Summary .......................................59
4.1 Introduction ..............................59
4.2 Derivation of the formulation .............62
4.2.1 Firchera’s method for the boundary element method ................................................62
4.2.2 Self-regularization approach for the linear algebraic equation ....................................62
4.2.3 Linkage of the slack variables corresponding to the bordered matrix to the Fredholm alternative theorem ...................................65
4.3 Illustrative examples .....................66
4.4 Concluding remarks ........................77

Chapter 5 Conclusions and further researches ..........91
5.1 Conclusions ...............................91
5.2 Future researches .........................92

References ............................................93
Appendix A ...........................................101
Appendix B ...........................................105

[1] Alarcon E., Martin A. A. and Paris F., 1979, Boundary element in potential and elasticity theory. Computers and Structures, Vol. 10, pp. 351-362.

[2] Banerjee P. K., 1994, Boundary Element Methods in Engineer Science (2nd edn). McGraw-Hill, London.

[3] Barone M. R. and Caulk D. A., 1982, Optimal arrangement of holes in a two-dimensional heat conductor by a special boundary integral method. International Journal for Numerical Methods in Engineering, Vol. 18, pp. 675-685.

[4] Ben-Israel A. and Greville T. N. E., 2003,
Generalized Inverses: Theory and Applications, New York.

[5] Blacerzak M. J. and Raynor S., 1961, Steady state temperature distribution and heat flow in prismatic bars with isothermal boundary conditions. International Journal of Heat and Mass Transfer, Vol. 3, pp. 113-125.

[6] Blazquez A., Mantic V., Paris F. and Canas J., 1996, On the removal of rigid body motions in the solution of elastostatic problems by direct BEM. International Journal for Numerical Methods in Engineering, Vol. 36, pp. 4038-4021.

[7] Caulk D. A., 1983, Analysis of elastic torsion in a bar with circular holes by a special boundary integral method. ASME Journal of Applied Mechanics, Vol. 50, pp. 101-108.

[8] Chakrabarti A., Mandal B. N., Basu U. and Banerjea S., 1997, Solution of a hypersingular integral equation of the second kind. Journal of Applied Mathematics and Mechanics, Vol. 77, pp. 319-320.

[9] Chen H. W. and Greengard L., 1997, On the numerical evaluation of electrostatic field in dense random dispersions of cylinders. Journal of Computational Physics, Vol. 136, pp. 629-639.

[10] Chen I. L., Chen J. T., Kuo S. R. and Liang M. T., 2001, A new method for true and spurious eigensolutions of arbitrary cavities using the combined Helmholtz exterior integral equation method. Journal of Acoustical Society of America, Vol. 109, pp. 982-998.

[11] Chen J. T. and Chen K. H., 1998, Dual integral formulation for determining the acoustic modes of a two-dimensional cavity with a degenerate boundary. Engineering Analysis with Boundary Elements, Vol. 21, No. 2, pp. 105-116.

[12] Chen J. T., Liang M. T., Chen I. L., Chyuan S. W. and Chen K. H., 2001, Dual boundary element analysis of wave scattering from singularity. Wave Motion, Vol. 30, pp. 367-381.

[13] Chen J. T., Kuo S. R., Lin J. H., 2001, Analytical study and numerical experiments for degenerate scale problems in boundary element method. Engineering Analysis with Boundary Elements, Vol. 25, pp. 819-828.

[14] Chen J. T., Lin J. H., Kuo S. R. and Chiu Y. P., 2001, Analytical study and numerical experiments for degenerate scale problems in boundary element method using degenerate kernels and circulants. Engineering Analysis with Boundary Elements, Vol.25, pp. 819-828.

[15] Chen J. T., 2002, On the rank-deficiency problems in boundary integral formulation using the Fredholm alternative theorem and singular value decomposition technique, Fifth World Congress on Computational Mechanics, Vienna, Austria. (Keynote lecture)

[16] Chen J. T., Lee C. F., Chen I. L. and Lin J. H., 2002, An alternative method for degenerate scale problems in boundary element methods for the two-dimensional Laplace equation. Engineering Analysis with Boundary Elements, Vol. 26, pp. 559-569.

[17] Chen J. T., Kuo S. R. and Lin J. H., 2002, Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticity. International Journal for Numerical Methods in Engineering, Vol. 54, pp. 1669-1681.

[18] Chen J. T., Lee C. F., Chen I. L. and Lin J. H., 2002, An alternative method for degenerate scale problem in boundary element methods for the two-dimensional Laplace equation. Engineering Analysis with Boundary Elements, Vol.26, pp. 559-569.

[19] Chen J. T., Chen W. C., Lin S. R. and Chen I. L., 2003, Rigid body mode and spurious mode in the dual boundary element formulation for the Laplace problems. Computers and Structures, Vol. 81, pp. 1395-1404.

[20] Chen J. T., Chen K. H., Chen I. L. and Liu L. W., 2003, A new concept of modal participation factor for numerical instability in the dual BEM for exterior acoustics. Mechanics Research Communications, Vol. 30, pp. 161-174.

[21] Chen J. T., Lin S. R. and Chen K. H., 2005, Degenerate scale problem when solving Laplace equation by BEM and its treatment. International Journal for Numerical Methods in Engineering, Vol. 62, pp. 233-261.

[22] Chen J. T., Shen W. C. and Wu A. C., 2005, Null-field Integral equations for stress field around circular holes under anti-plane. Engineering Analysis with Boundary Elements, Vol. 30, pp. 205-217.

[23] Chen J. T., Wu C. S., Chen K. H. and Lee Y. T., 2006, Degenerate scale for the analysis of circular thin plate using the boundary integral equation method and boundary element methods. Computational Mechanics, Vol. 38, pp. 33-49.

[24] Chen J. T. and Shen W. C., 2007, Degenerate scale for multiply connected Laplace problems. Mechanics Research Communications, Vol.34, pp. 69-67.

[25] Chen J. T., Chen P. Y. and Chen C. T., 2008, Surface motion of multiple alluvial valleys for incident plane SH-waves by using a semi-analytical approach. Soil Dynamics and Earthquake Engineering, Vol. 28, pp. 58-72.

[26] Chen J. T., Chou K. S. and Hsieh C. C., 2008, Derivation of stiffness and flexibility for rods and beams by using dual integral equations. Engineering Analysis with Boundary Elements, Vol. 32, pp. 121-108.

[27] Chen J. T., Lee Y. T. and Chou K. H., 2010, Revisit of two classical elasticity problems by using the null-field boundary integral equations. Journal of Mechanics, Vol. 26, pp. 393-401.

[28] Chen J. T., Lee Y. T. and Lee J. W., 2010, Torsional rigidity of an elliptic bar with multiple elliptic inclusions using a null-field integral approach. Computational Mechanics, Vol. 46, pp. 511-519.

[29] Chen J. T., Lee Y. T., Kuo S. R. and Chen Y. W., 2012, Analytical derivation and numerical experiments of degenerate scale for an ellipse in BEM. Engineering Analysis with Boundary Elements, Vol.36, pp.1397-1405.

[30] Chen J. T., Han H., Kuo S. R. and Kao S. K., 2014, Regularization methods for ill-conditioned system of the integral equation of the first kind with the logarithmic kernel. Inverse Problems in Science and Engineering, Vol. 22, pp. 1176-1195.

[31] Chen, J. T., Chang, Y. L., Kao, S. K. and Jian J., 2014, Revisit of the indirect boundary element method: necessary and sufficient formulation. Journal of Scientific Computing, in press.

[32] Chen J. T., Huang W. S., Fan Y. and Kao S. K., 2015, Revisit of the Dual BEM using SVD Updating Technique, Journal of Mechanics, in press.

[33] Chen K. H., Chen J. T., Chou C. R. and Yueh C. Y., 2002, Dual boundary element analysis of oblique incident wave passing a thin submerged breakwater. Engineering Analysis with Boundary Elements, Vol. 26, pp. 917-928.

[34] Chen Y. Z., Wang Z. X. and Lin X. Y., 2007, Numerical examination for degenerate scale problem for ellipse-shaped ring region in BIE. International Journal for Numerical Methods in Engineering, Vol. 71, pp. 1023-1230.

[35] Chen Y. Z. and Lin X. Y., 2008, Regularity condition and numerical examination for degenerate scale problem of BIE for exterior problem of plane elasticity. Engineering Analysis with Boundary Elements, Vol. 32, pp. 811-823.

[36] Chen Y. Z., Wang Z. X. and Lin X. Y., 2009, The degenerate scale problem for the Laplace equation and plane elasticity in a multiply connected region with an outer circular boundary. International Journal of Solids and Structures, Vol. 46, pp. 2605-2610.
[37] Chen Y. Z., 2015, Approximate solution for degenerate scale problem of two rigid lines in series in plane elasticity. International Journal of Solids and Structures, Vol. 52, pp. 205-208.

[38] Christiansen S., 1974, On Green’s third identity as a basis for derivation of integral equations. Journal of Applied Mathematics and Mechanics, Vol. 54, pp. 185-186.

[39] Christiansen S., 1975, Integral equations without a unique solution can be made useful for solving some plane harmonic problems. Journal of the Institution of Mathematics Applications, Vol. 16, pp.143-159.

[40] Christiansen S., 2001, Detecting non-uniqueness of solutions to biharmonic integral equations through SVD. Journal of Computational and Applied Mathematics, Vol. 134, pp. 23-35.

[41] Chyuan S. W., Liao Y. S. and Chen J. T., 2008, Efficient techniques for BEM rank-deficiency electrostatic problems. Journal of Electrostatics, Vol. 66, pp. 8-15.

[42] Cochran J. A., 1982, Applied mathematics: principles, techniques, and applications. Wadsworth: Belmont.

[43] Constanda C., 1955, Integral equations of the first kind in plane elasticity. Quarterly Applied Mathematics, Vol. 47, pp. 783 -793.

[44] Constanda C., 1993, On the solution of the Dirichlet problem for the two-dimensional Laplace equation. Proceedings of the American Mathematical Society, Vol. 119, pp. 877-884.

[45] Constanda C., 1994, On nonunique solutions of weakly singular integral equations in plane elasticity. Quarterly Journal of Mechanics and Mathematics, Vol. 47, pp. 261-268.

[46] Costabel M. and Dauge M., 1996, Invertibility of the biharmonic single layer potential operator. Integral Equations and Operator Theory, Vol. 24, pp. 46-67.

[47] Christiansen S., 1982, On two methods for elimination of non-unique solutions of an integral equation with logarithmic kernel. Applicable Analysis, Vol. 13, pp. 1-18.

[48] Crisfield M. A., 1997, Nonlinear Finite Element Analysis of Solids and Structures. Volume 1,2 John Wiley and Sons.
[49] Eriksson A., 1987, Using eigenvector projections to improve convergence in non-linear finite element equilibrium iterations. International Journal for Numerical Methods in Engineering, Vol. 24, pp. 512-497.

[50] Fichera G., 1959, Boundary problems in differential equations. Madison (WI): The University of Wisconsin Press.

[51] Felippa C. A, 1997, A direct flexibility method. Computer Methods in Applied Mechanics and Engineering, Vol. 149, pp. 337-319.

[52] Felippa C. A., Park K. C. and Justino Filho M. R., 1998, The construction of free-free flexibility matrices as generalized stiffness inverses. Computer &; Structures, Vol. 68, pp. 418-411.

[53] Felippa C. A. and Park K. C., 2002, The construction of free-free flexibility matrices for multilevel structural analysis. Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 2168-2139.

[54] Feng K., 1980, Differential vs. integral equations and finite vs. infinite elements. Mathematica Numerica Sinica, Vol. 2, pp. 100-105.

[55] Garcia-Castillo L. E., Gomez-Revuelto I., Adana F. S. de and Salazar-Palma M., 2005, A finite element method for the analysis of radiation and scattering of electromagnetic waves on complex environments. Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 637-655.

[56] Gipson G. S. and Yeigh B. W., 2008, The unit circle trap in boundary elements redux. Engineering Analysis with Boundary Elements, Vol. 32, pp. 431-437.

[57] Hartwig R. E., 1976, Singular Value Decomposition and the Moore–Penrose Inverse of Bordered Matrices. SIAM Journal on Applied Mathematics, Vol, 31, pp. 41-31.

[58] He W. J., Ding H. J. and Hu H. C., 1996, Non-equivalence of the conventional boundary integral formulation and its elimination for two-dimensional mixed potential problems. Computers &; Structures, Vol. 60, pp. 1029-1035.

[59] He W. J., 1996, A necessary and sufficient boundary integral formulation for plane elasticity problems. Communications in Numerical Methods in Engineering, Vol. 12, pp. 413-424.

[60] He W. J., Ding H. J. and Hu H. C., 1996, Non-equivalence of the conventional boundary integral formulation and its elimination for plane elasticity problems. Computers &; Structures, Vol. 59, pp. 1059-1062.

[61] He W. J., Ding H. J. and Hu H. C., 1996, Degenerate scale and boundary element analysis of two-dimensional potential and elasticity problems. Computers &; Structures, Vol. 60, pp. 155-158.

[62] Healey T. J. and Treacy J. A., 1991, Exact block diagonalisation of large eigenvalue problems for structures with symmetry. International Journal for Numerical Methods in Engineering, Vol. 31, pp. 285-265.

[63] Hong H. -K. and Chen J. T., 1988, Derivations of Integeral Equations of Elastity. Journal of Engineering Mechanics, Vol. 114, pp. 1028-1044.

[64] Hutchinson J. R., 1985, An alternative BEM formulation applied to membrane vibrations, In: Boundary Elements VII (Eds. Brebbia C. A. and Maier G.). Berlin: Springer-Verlag.

[65] Hutchinson J. R., 1988, Vibration of plates, In: Boundary Elements X (Ed. Brebbia C. A.). Berlin: Springer-Verlag.

[66] Hu H. C., Ding H. J. and He W. J., 1997, Equivalent boundary integral equations for plane elasticity. Science in China Series A, Vol. 40, pp. 76-82.

[67] Jaswon M. A. and Symm G. T., 1977, Integral equation methods in potential theory and elastostatics. Academic Press, New York.

[68] Kaveh A. and Nikbakht M., 2007, Decomposition of symmetric mass-spring vibrating systems using groups, graphs and linear algebra. Communications in Numerical Methods in Engineering, Vol. 23, pp, 664-639.

[69] Kinoshita N. and Mura T., 1956, On boundary value problem of elasticity. Research Report of the Faculty of Engineering, Meiji University.

[70] Kuhn G., 1988, 1988, BEM in elastostatics and fracture mechanics. Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, Vol. 301, pp. 109-169.

[71] Kuo S. R., Chen J. T. and Kao S. K., 2013, Linkage between the unit logarithmic capacity in the theory of complex variables and the degenerate scale in the BEM/BIEMs. Applied Mathematics Letters, Vol. 26, pp. 929-938.

[72] Kuo S. R., Chen J. T., Lee J. W. and Chen Y. W., 2013, Analytical derivation and numerical experiments of degenerate scale for regular N-gon domains in BEM. Applied Mathematics and Computation, Vol. 219, pp. 5668-5683.

[73] Landkof N. S., 1972, Foundations of modern potential theory. Springer-Verlag: Berlin.

[74] Lee M. G., Li Z. C., Huang H. T. and Chiang J. Y., 2013, Conservative schemes and degenerate scale problems in the null-field method for Dirichlet problems of Laplace’s equation in circular domains with circular holes. Engineering Analysis with Boundary Elements, Vol. 37, pp. 95-106.

[75] Li Z. C., Lee M. G. and Chen J. T., 2010, New series expansions for fundamental solutions of linear elastostatics in 2D. Computing, Vol. 92, pp. 199-224.

[76] Lutz E., Ye W. and Mukherjee S., 1998, Elimination of rigid body modes from discretized boundary integral equations. International Journal of Solids and Structures, Vol. 35, pp. 4436-4427.

[77] Mills R. D., 1997, Computing integral viscous flow problems for the circle by integral methods. Journal of Fluid Mechanics, Vol. 73, pp. 609-624.

[78] Riks E., 1979, An incremental approach to the solution of snapping and bucking problems. International Journal of Solids and Structures, Vol. 15, pp. 551-529.

[79] Rizzo F. J., 1967, An integral equation approach to boundary value problems of classical elastostatics. Quarterly of Applied Mathematics, Vol. 25, pp. 83-95.

[80] Schenck H. A., 1968, Improved integral formulation for acoustic radiation problems. Journal of Acoustical Society of America, Vol. 44, pp. 41-58.

[81] Ting T. C., 1985, Elastic wedge subjected to antiplane shear tractions-a paradox explained. Quarterly Journal of Mechanics &; Applied Mathematics, Vol. 38, pp. 245-255.

[82] Vodicka R., Mantic V. and Paris F., 1884, On the removal of the non-uniqueness in the solution of elastostatic problems by symmetric Galerkin BEM.
International Journal for Numerical Methods in Engineering, Vol. 66, pp. 1912-1884.

[83] Vodička R. and Mantič V., 2004, On invertibility of elastic single-layer potential operator. Journal of Elasticity, Vol. 74, pp. 147-173.

[84] Vodička R., Mantič V. and Paris F., 2006, Note on the removal of rigid body motions in the solution of elastostatic traction boundary value problems by SGBEM. Engineering Analysis with Boundary Elements, Vol. 30, pp. 798-790.

[85] Vodička R. and Mantič V., 2008, On solvability of a boundary integral equation of the first kind for Dirichlet boundary value problems in plane elasticity. Computational Mechanics, Vol. 41, pp. 817-826.

[86] Vodička R. and Petrik M., 2015, Degenerate scales for boundary value problems in anisotropic elasticity. International Journal of Solids and Structures, Vol. 52, pp. 209-219.

[87] Yan Y. and Sloan I. H., 1988, On integral equations of the first kind with logarithmic kernels. Journal of Integral Equation and Applications, Vol. 1, pp. 549-580
.
[88] Yu DH., 2002, Natural boundary integral method and its applications. Science press/Kluwer, Beijing/New York.

[89] Zhou S. J., Sun S. X. and Cao Z. Y., 1999, The boundary contour method based on the equivalent boundary integral equation for 2-D linear elasticity. Communications in Numerical Methods in Engineering, Vol. 15, pp. 811-821.

[90] Zingoni A., 2014, Group-theoretic insights on the vibration of symmetric structures in engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,Vol. 372, 20120037-20120037

[91] Zingoni A., 2012, A group-theoretic finite-difference formulation for plate eigenvalue problems. Computers &; Structures, Vol. 112-113, pp. 282-266.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top