跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.87) 您好!臺灣時間:2025/11/30 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊名
研究生(外文):Jyun-Min Lin
論文名稱:以不同表面披覆技術改善矽基微波被動元件之熱穩定性及濾波元件之製作
論文名稱(外文):Improvement of Thermal Stability for Silicon-based Microwave Passive Components by Surface Passivation and the Filter Design
指導教授:劉志益翁敏航翁敏航引用關係
指導教授(外文):Chih-Yi LiuMin-Hang Weng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:披覆高阻值矽傳輸線濾波器
外文關鍵詞:passivationhigh-resistance silicontransmissionfilter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討在不同之表面披覆技術下共平面傳輸線之熱穩定性及共平面濾波元件之設計、模擬、製作與其量測特性。
在熱穩定性的研究方面,主要是利用氬離子佈植不同之濃度於P 型高阻值矽基板,討論佈植後加熱及施加偏壓後對傳輸線所造成之影響,並利用MOS電容結構量測基板中載子的狀況。由實驗結果得知,於製程中加入快速熱退火可以有效降低傳輸線的損失。另外,利用高密度化學氣相(high density plasma chemical vapor deposition,HDP-CVD)沉積oxide rich silicon薄膜於高阻值矽基板上,討論回火前後的插入損失。
濾波器元件製作部分,使用IE3D設計共平面結構之低通及帶通濾波器,將其製作於以多晶矽薄膜進行表面披覆之高阻值矽基板上,並針對其量測結果做討論。
The thermal stability of Si-based coplanar waveguide (CPW) was improved by various surface passivations. The Si-based CPW filter was also designed, simulated, and fabricated.
Ar+ ion implantation was adopted to damage the high-resistance (HR) silicon substrate, which could decrease the insertion loss of the CPW. However, the Si grains were recrystallizd after high temperature process, which increased insertion loss of the CPW again and caused the thermal instability. A rapid thermal annealing (RTA) process was performed after the Ar+ ion implantation to retarded the grain growth and improve the thermal instability. The RTA process would also keep Si-based CPW DC independence. The Raman spectrometer and the capacitance-voltage characteristics of metal-oxide-semiconductor (MOS) capacitor were also adopted to analyze the improvement of the thermal stability. The oxide rich silicon was also used to improve the thermal stability of Si-based CPW. The oxygen ions were doped into the Si passivation layer to retard the grain growth and improve the thermal stability.
For the filter fabrication, the simulation software IE3D was used to design and analyze the CPW band-pass and low-pass filter. The CPW filter was fabricated with polycrystalline silicon passivation and the performance was also discussed.
總目錄
摘 要 III
ABSTRACT IV
總目錄 VIII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 研究背景 1
1-2 論文架構 4
第二章 理論基礎與文獻回顧 5
2-1 微帶線基本理論 5
2-2 微波損失來源 9
2-3 濾波器原理 11
2-4 MOS電容特性介紹 13
2-5 MOS電容的氧化層缺陷 19
2-6 離子佈植系統簡述 20
2-7 文獻回顧 21
第三章 實驗方法及步驟 31
3-1 實驗步驟 31
3-2 實驗流程 32
3-2-1 被動元件之製作 32
3-2-2 氬離子佈植試片製作 33
3-2-3 oxide rich silicon 試片製作 34
3-3 製程儀器 38
3-3-1高溫及低壓爐管(Horizontal Furnace) 38
3-3-2電漿輔助式化學氣相沈積&感應耦合式電漿蝕刻系統(PECVD & ICP) 39
3-3-3高密度電漿化學氣相沉積(HDP–CVD) 40
3-3-4多功能真空濺鍍系統(sputtering) 40
3-3-5光罩對準曝光機(Mask aligner MJB3) 41
3-4 物性分析儀器 41
3-4-1 拉曼光譜分析儀 (Raman Spectrometer) 41
3-5 電性量測儀器 42
3-5-1 網路分析儀 42
3-5-2 晶圓級量測法(On-wafer probing) 42
3-5-3 電容-電壓(C-V)量測 43
4-1 離子佈植製程之改善 44
4-1-1 拉曼光譜分析 44
4-1-2 網路分析儀量測 46
4-1-3 電容電壓(C-V)量測 53
4-2 添加氧原子於矽披覆薄膜 57
第五章 以表面披覆之基板製作共平面波導傳輸線及濾波器 60
5-1 共面波導傳輸線製作及量測 60
5-2 低通濾波器之設計與量測 63
5-3 帶通濾波器之設計與量測 67
第六章 結論與未來展望 72
6-1 結論 72
6-2 未來展望 72
參考文獻(Reference) 74
參考文獻(Reference)
[1]H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microw. Guided Wave Lett., vol. 9, no. 10, pp. 395-397, Oct. 1999.
[2]K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D.S. Duh, and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron Device Lett., vol. 24, pp. 28-30, Jan. 2003.
[3]K. J. Herrick, T. A. Schwarz, and L. P. B. Katehi, “Si-micromachined coplanar waveguides for use in high-frequency circuits,” IEEE Trans. Microw. Theory Tech., vol. 46, pp. 762-768, June 1998.
[4]G. E. Ponchak, A. Margomenos, and L. P. B. Katehi, “Low-loss CPW on low-resistivity Si substrates with a micromachined polyimide interface layer for RFIC interconnects,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 866-870, May 2001.
[5]B. Rong, J. Burghartz, L. Nanver, B. Rejaei, and M. van der Zwan, “Surface-passivated high-resistivity silicon substrates for RFICs,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 176–178, Apr. 2004.
[6]D. Lederer and J.-P. Raskin, “New substrate passivation method dedicated to HR SOI wafer fabrication with increased substrate resistivity,” IEEE Electron Device Lett., vol. 26, no. 11, pp. 805–807, Nov. 2005.
[7]G. Posada, G. Carchon, P. Soussan, G. Poesen, B. Nauwelaers, and W. De Raedt, “High-resistivity silicon surface passivation for the thinfilm MCM-D technology,” in Proc. 6th Top. Meeting Silicon Monolithic Integr. Circuits RF Syst., San Diego, CA, pp. 46–49, Jan. 2006.
[8]C. Reyes, S. M. El-Ghazaly, S. Dorn, M. Dydyk, and D. K. Schroder, “Ar Implantation, a Passivation Technique for High-Resistivity Silicon within the MCM-D Technology,” IEEE European Microwave Integrated Circuits Conference, pp. 1759–1762, Sept. 2006.
[9]R. N. Simons, Coplanar Waveguide circuits, Components, and Systems. New York: Wiley, 2001.
[10]謝煜弘,“電子材料”,四版,新文京開發出版社,台北,2005.
[11]翁敏航,“射頻被動元件設計”,東華書局,2005.
[12]林偉湟,施明昌, “利用AIN薄膜材料於MIS結構之製作與特性量測研究,” 國立高雄大學電機工程學系碩士論文,2005年12月。
[13]施敏,“半導體原件物理與製作技術”,高力圖書有限公司,2002。
[14]A. C. Reyes, S. M. El-Ghazaly, S. Dorn, M. Dydyk, and D. K. Schroder, “Silicon as a microwave substrate,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1759–1762, May 1994.
[15]Y. Wu, H.S. Gamble, B.M. Armstrong, V.F. Fusco, and J.A.C. Stewart, “SiO2 Interface Layer Effects on microwave loss of High-Resistivity CPW Line,” IEEE Microw. Guided Wave Lett., vol. 9, no. 1, pp. 10-12, Jan. 1999.
[16]H. T. Lue, C. Y. Liu, and T. Y. Tseng, “An Improved Two-Frequency Method of Capacitance Measurement for the High-k Gate Dielectrics”, IEEE Electron Device Lett., vol. 23, no. 9, pp. 553-555, Sep. 2002.
[17]D. F. Williams and S. E. Schwarz, “Design and performance of coplanar waveguide bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 31, no. 7, pp. 558–566, Jul. 1983.
[18]Y. S. Lin, W. C. Ku, C. H. Wang, and C. H. Chen, “Wideband Coplanar-Waveguide Bandpass Filters With Good Stopband Rejection,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 422–424, Sep. 2004.
[19]J. Sor, Y. Qian, and T. Itoh, “Miniature low-loss CPW periodic structures for filter applications,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 2336–2341, Dec. 2001.
[20]葉昌鑫、洪振源、蘇炎坤、黃俊岳、翁敏航, “前瞻性共平面波導濾波器之設計,” 電子月刊, vol. 141, pp. 184-194, 2007.
[21]M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communications: Theory, Design and Application. Berlin, Germany: Springer, 2001.
[22]M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped impedance ring resonator for bandpass filter applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 7, pp. 1235–1240, Jul. 2001.
[23]H. Zhang and K. J. Chen, “A tri-section stepped-impedance resonator for cross-coupled bandpass filters,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 401–403, Jun. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top