跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱祐賢
研究生(外文):You-Sian Chu
論文名稱:主軸-刀柄系統介面剛性與刀具切削穩定性之相關實驗分析
論文名稱(外文):Investigation on the Relationship between the Interface Stiffness of Tool Holder and Machining Stability of a High Speed Spindle
指導教授:洪瑞斌洪瑞斌引用關係
指導教授(外文):Jui-Pin Hung
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:104
中文關鍵詞:高速主軸刀柄結合剛性刀具系統動剛性切削穩定性
外文關鍵詞:High speed spindleInterface stiffnessTool holder systemDynamic stiffnessMachining Stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:592
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:2
本研究應用有限元素法與實驗分析探討刀具-刀柄系統對工具機主軸動態特性與切削穩定性的影響。研究中,首先應用有限元法建立高速主軸分析模型,並應用赫茲接觸理論計算軸承鋼珠之接觸剛性,同時利用彈簧元素模擬軸承內部鋼珠滾動介面特性,透過模態與簡諧分析預測主軸之主要振動模態及自然振動頻率,再以振動實驗驗證有限元素分析模型之正確性。此外,本研究透過參數鑑別法取得刀柄與主軸鼻端結合介面剛性,以評估刀柄拉刀力大小對刀柄介面剛性以及主軸動態響應的影響。研究結果顯示,拉刀力大小會影響刀柄與主軸鼻端結合介面剛性,當增加拉刀力時,主軸自然振動頻率與刀具端靜態剛性會隨之提高。此外,拉刀力亦會影響刀柄結合面阻尼性質,但兩者未具有正向關係,過度增加拉刀力,反而會減少介面阻尼性質而降低動剛性,以本案探討主軸而言,當拉刀力達250kg時,可使主軸端具有最大動剛性,此時刀具具有最大穩定臨界切深。
綜合各項研究得知,刀具系統存在與否確實影響主軸振動模態與振動頻率之評估,而刀柄結合介面剛性與阻尼性質對於主軸刀具之切削穩定性有直接性的影響。因此,有關刀柄介面特性之建立與釐清對主軸刀具系統之切削性能之調校是相當重要且不容忽視的實務性研究議題。

In this study, the finite element method was employed to predict the tool system and interface stiffness of tool holder system on the dynamic frequency response of high speed spindle. Since the interface characteristics of tool holder system tend to affect the spindle, therefore tool holder system is very important. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder; while the correlation among them were not in linear relationship. Current results verify that when the drawbar force was controlled at 250kg, the spindle tool shows highest dynamic stiffness and the maximum axial depth for stable machining. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance.
摘要 I
目 錄 V
表 目 錄 IX
符號說明 X
第一章 序論 1
1.1研究背景 1
1.2文獻回顧 2
1.2.1有限元素分析 2
1.2.1切削穩定性分析 4
1.3研究目的 6
1.4本文架構 7
第二章 高速主軸概論 8
2.1高速切削定義 8
2.2高速主軸性能概述 9
2.3高速主軸傳動型式 12
2.3.1軸承排列方式 14
2.4高速主軸預壓型式及作用 16
2.4.1 斜角滾珠軸承預壓特性 17
2.4.2 軸承預壓控制方法 19
第三章 基礎理論 22
3.1滾動介面接觸剛性 22
3.2結構模態分析 24
3.3結構動剛性分析 26
3.4振動阻尼性 28
3.5 有限元素阻尼模型 34
3.6切削顫振理論 35
3.7切削力方程式 37
3.8切削穩定性分析 42
第四章 主軸 44
4.1前言 44
4.2有限元素模型建立 44
4.3主軸模態分析 47
4.4主軸振動實驗 50
4.5實驗方法與結果 54
第五章 主軸與刀具系統 57
5.1前言 57
5.2實驗設備與方法 57
5.2.1實驗設備 57
5.2.2不同拉刀力之實驗 61
5.3實驗結果 62
5.3.1振動敲擊實驗結果 62
5.3.3曲線擬合 72
5.4主軸模態分析與模型驗證 76
第六章 主軸與刀具系統結合效應 79
6.1前言 79
6.2刀柄介面效應 81
6.3刀柄介面剛性對頻率之影響 81
6.4刀柄介面剛性對主軸動態特性之影響 87
6.5刀柄介面剛性對主軸動剛性之影響 89
第七章 高速主軸切削穩定性分析 91
7.1前言 91
7.2模型建立 91
7.3主軸模態分析(含治具模型) 92
7.4振動敲擊實驗 95
7.5實驗結果與切削穩定性分析 97
第八章 結論 100
8-1結論 100
參考文獻 102

1. H. Filiz, A. Akpolat, I. H. Guzelbey, Deformation and Pressure Distribution on Machine Tool Slideways, Tools Manufacture, Vol. 37, No 3, pp. 309-318, 1997.
2. S. S. Wu , J. C. Chang, J. P. Hung, Chara- cterization of the dynamic behavior of a linear guideway mechanism, Structural Engineering and Mechanics, Vol.25(1) , pp. 1-10, 2007.
3. S. S. Wu , J. C. Chang, J. P. Hung, The effect of contact interface on dynamic characteristics of composite structures, Mathematics and Computers in Simulation, Vol. 10, pp. 454-467, 2007.
4. C. F. Beards, The damping of structural vibration by controlled interfacial slip in joints, ASME Publication, 81-DET-86, 1986.
5. H. Ohta, Sound of guideway type recirculating linear ball bearings, Transactions of the ASME Journal of Tribology, Vol. 121, pp. 678-685, 1999.
6. H. Ohta, E. Hayashi, Vibration of linear guideway type recirculating linear ball bearings, Journal of Sound and Vibration, Vol.235(5) , pp. 847-861, 2000.
7. M. Yoshimura, Computer-aided design improvement of machine tool structure incorporating joint dynamics data, Annals of the CIRP, Vol. 28, pp. 241-246, 1979.
8. 翁嘉駿,工具機動件結構最佳化設計與分析,私立中原大學機械所碩士論文,2005年。
9. 孫健利,精密直線滾動導軌的預加載荷及剛度計算,華中理工大學學報,第16 卷第六期,125-130, 1988年。
10. 孫健利,直線滾動導軌機構承受垂直載荷時的剛度計算,華中理工大學學報,第16 卷第五期,35-40,1988年。
11. 劉建素、李准,滾動直線導軌副靜剛度試驗”,制造技術与机床,第七期, 12~13頁,1997。
12. Y. Kang, H. C. Chen, J. J. Liu, Dynamic analysis of rotor-bearing system using ANSYS, ANSYS Users Conference, Tau-Yuan, Taiwan, 1995
13. Y. Kang, Y. P. Chang, J. W. Tsai, H. L. Mu, and Y. F. Chang, An investigation in stiffness effects on dynamics of rotor-bearing-foundation systems, Journal of Sound and Vibration, Vol. 231(2), pp. 343-374, 2000.
14. Y. Kang, Y. P. Chang, J. W. Tsai, S. C. Chen, L. K. Yang, Integrated CAE strategies for the design of machine tool spindle-bearing-systems, Finite Element in Analysis and Design 37.
15. K. W. Wang, Y. C. Shin, C. H. Chen, On the natural frequencies of high-speed spindles with angular contact bearings, Proc. Instn. Mech. Engrs. Vol. 205, pp. 147-154,1991.
16. T. A. Harris, Rolling Bearing Analysis, John Wiley &; Sons, Inc., New York, 1991.
17. M. Ninomiya, S. Kato, Analysis of linear guide and ball screw stiffness, International Journal of the Japan Society for Precision Engineering, Vol. 33, pp. 173-177, 1999.
18. F. W. Taylor, On the Art of Cutting Metals, ASME, 1970.
19. S. Smith, W. Winfough, J. Halley, The Effect of Tool Length on Stable Metal Removal Rate in High Speed Milling, Annals of the CIRP, vol. 47/1, pp. 307-310, 1998.
20. R. N. Arnold, The Mechanism of Tool Vibration in the Cutting of Steel, Proc IMech E. Vol.154, P.261, 1946.
21. H. E. Merritt, Theory of Self-Excited Machine-Tool Chatter, Transections of the ASME, Journal of Engineering for Industry,Vol. 87, pp. 447-454, 1965.
22. Mahdavinejad, Ramezanali, Finite Element Analysis of Machine and Workpiede Instability in Turning, International Journal of Machine tools and Manufacture, Vol. 45, pp. 753-760, 2005.
23. A. Tekeli, E. Budak, Maximization of Chatter-Free Material Removal Rate In End Milling Using Analytical Metods, Machining Science and Technology, Vol. 9, pp. 147-167, 2005.
24. Z. J. Yuan, L. J. Cai , A New Critical Stability Formula and a New Absolute Stability Criterion, Annals of CIRP, Vol.35, pp.267-268 , 1986.
25. 周嘉莉與陳瑾鴻,高速高效率加工,機械月刊,第36卷第4期,93~105頁,2010年。
26. W. A. Fladung, D. L. Brown, Multiple Reference Impact Testing, The 11th IMAC. pp.1221-1229, 1993.
27. Y. Altintas, and E. Budak, Analytical Prediction of Stability Lobes in Milling, Annals of the CIRP, Vol.44/1, pp. 357-362, 1995.
28. The Effect of Drawbar Force on Metal Removal Rate in Milling S. Smith’ (2), T. P. Jacobs’, J. Halley2, Received on January 6, 1999

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top