跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 00:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱麗華
研究生(外文):Li-Hua Chiu
論文名稱:甲魚肉酵素水解物對抑制血管收縮素轉化酶及降血壓功能之研究
論文名稱(外文):Effect of enzymatic hydrolysate of soft-shelled turtle powder on antihypertensive effect and inhibition of angiotensin I-converting enzyme
指導教授:盧義發盧義發引用關係
指導教授(外文):Yi-Fa Lu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:84
中文關鍵詞:甲魚高血壓自發性高血壓大鼠血管收縮素轉化酶胜肽胃腸道酵素
外文關鍵詞:Soft-shelled turtlehypertensionspontaneously hypertensive ratsangiotensin I-converting enzymepeptidesgastrointestinal enzyme
相關次數:
  • 被引用被引用:9
  • 點閱點閱:822
  • 評分評分:
  • 下載下載:211
  • 收藏至我的研究室書目清單書目收藏:0
甲魚(soft-shelled turtle, SST)是屬於高經濟的養殖產業,具多種生理功能。本研究主要探討去脂之甲魚粉以胃蛋白酶(pepsin)、胰蛋白酶(trypsin)和凝乳胰蛋白酶(chymotrypsin)水解後之水解物(PCT-SST),及其分子量大於或小於5000 Da的區分,對抑制血管收縮素轉化酶(ACE)之能力以及自發性高血壓大鼠(SHR)血壓的影響。未經酵素水解之甲魚肉,對ACE的抑制能力非常低,其IC50 為16.7 mg/mL,而經酵素水解之甲魚肉水解物,其抑制ACE能力顯著增加(PCT-SST之IC50 = 3.2 mg/mL),且分子量愈小之胜肽溶液對於抑制ACE活性之效果愈佳(Mr<1000 Da之IC50 = 2.8 mg/mL)。
將抑制ACE能力最佳之胜肽溶液(Mr<1000),利用膠體過濾層析,可得到六個主要劃分物,其中區分四、五、六這三個區分具有ACE抑制活性,而又以分子量介於1064 Da以及295 Da 之區分四以及區分五抑制ACE活性之效果最佳。
將PCT-SST溶液給予SHR,當單次管餵500 mg/kg BW或1000 mg/kg BW之劑量時,在管餵第6以及第8小時均可顯著降低SHR之收縮壓(p<0.05),尤其以高劑量組降收縮壓效果更佳。舒張壓部分,同樣單次給予SHR 500 mg/kg BW 以及1000 mg/kg BW之劑量,在管餵第6以及第8小時之舒張壓顯著低於管餵前。而管餵分子量大於5000 Da之區分,給予高劑量(500 mg/kg BW)之SHR在管餵第10小時,其收縮壓顯著低於控制組;分子量小於5000 Da之胜肽溶液,則以管餵50 mg/kg BW之劑量,SHR在管餵第八小時與控制組者相較,收縮壓降低12 mmHg。以上結果顯示,甲魚之胃腸道酵素水解物對於SHR具有降血壓之功效。
Chinese soft-shelled turtle (SST) is one of highly economic products in cultivation in Taiwan, it have many kinds of physiological functions. This study was to investigate the antihypertensive effect and inhibition of angiotensin converting enzyme (ACE) activity of hydrolysate of SST powder (PCT-SST) derived from hydrolysis of pepsin, trypsin and chymotrypsin. The SST powder showed limited inhibition of ACE (IC50 = 16.7 mg/mL). The inhibitory activity of ACE in hydrolysate derived from hydrolysis of gastrointestinal enzyme increased markedly (IC50 = 3.2 mg/mL). The smaller molecular weight was performed better inhibition of ACE activity (IC50 of molecular weight less than 1000 Da was 2.8 mg/mL).
The fraction of molecular weight less than 1000 Da by ultrafiltration was separated into 6 fractions by gel filtration eluted with deionized water, in which 3 fractions showed ACE inhibition. The fraction 4 and fraction 5 of molecular weight between 1063 Da and 205 Da, has the best inhibition of ACE.
Single oral administration with the dose of 500 mg/kg BW and 1000 mg/kg BW from PCT-SST solution to spontaneously hypertension rat (SHR) showed noticeable decrease of systolic blood pressure (SBP) at the 6th, 8th hour (p<0.05). In addition, same dose of PCT-SST solution also significantly decreased of diastolic blood pressure (DBP) at the 6th, 8th hour. PCT-SST solution with molecular weight more than 5000 Da, showed lower SBP at the 10th hour after signal oral administration at dose of 500 mg/kg BW in SHR, when compared with that control group. On the other hand, molecular weight less than 5000 Da had lower SBP at the 8th hour after signal oral administration at dose 50 mg/kg BW than that control group. The results suggested that hydrolysate of SST powder derived from gastrointestinal enzyme have ACEI activity and antihypertensive effect to SHR.
目錄
頁次
中文摘要………………………………………………………………I
英文摘要………………………………………………………………..III
致謝……………………………………………………………………...V
目錄…………………………………………………………………VI
圖目錄………………………………………………………………IX
表目錄………………………………………………………………X
附圖目錄………………………………………………………………XI
附表目錄………………………………………………………………XII
壹、前言…………………………………………………………………..1
貳、文獻回顧…………………………………………………………..…3
一、高血壓簡介……………………………………………….………3
(一)高血壓的形成…………………………………………………4 (二)高血壓的種類…………………………………………………..4
二、自發性高血壓老鼠簡介……………………………..……………7
三、血管收縮素轉化酶之作用…………………………………….8
(一)血管收縮素轉化酶之生化特性………………………………8 (二)腎素-血管收縮系統之作用……………………………………8(三)血管收縮素轉化酶抑制劑………………………………..……9 (四)具ACEI之胜肽序列……………………………………..…10 (五)食品中ACE抑制劑之開發……………………………….…10
四、甲魚之相關研究………………………………………………16
(一)一般性質………………………………………………………16(二)甲魚之功能……………………………………………….…17
參、實驗材料與方法………………………………………………21
一、藥品與器材………………………………………………………21
(一)原料…………………………………………...………………..21(二)分析用試藥……………………………………………….…21 (三)儀器設備……………………………………………….……22
二、實驗方法…………………………………………………………23
(一)甲魚肉之酵素水解產物之製備…………….…………………23 (二)粗蛋白含量(Kjeldahl)測定………………………………23(三)水解物中可溶性蛋白質含量的測定………………………..24(四)水解率(degree of hydrolysis)之測定………………………24(五)胜肽濃度之測定……………………………………………25(六)ACEI之活性測定……………………………………………26(七)半抑制濃度(IC50)測定……………………………………27(八)水解物中具ACEI胜肽之分離與收集………………………27(九)劃分收集物對ACE抑制活性之測定………………………28(十) 具ACE抑制能力胜肽之純化……………………………...…28(十一)胺基酸的組成…………………………………………..…28(十二)自發性高血壓鼠(SHR)活體試驗………..………………29(十三)統計分析………………………………………………….30
肆、結果與討論…………………………………………………………31
一、水解物可溶性蛋白質含量及胜肽濃度……………………31
二、甲魚粉之水解物對抑制ACE之IC50…………………………33
三、甲魚粉之水解物對原發性高血壓大鼠血壓的影響…………35
(一)不同劑量之之酵素水解甲魚液對SHR收縮壓以及舒張壓之影 響………………………………………………….……………………36
(二)不同分子量甲魚水解物對SHR收縮壓以及舒張壓之影響……………………………………………………………………….38
四、各劃分物…………………………………………………………...40
五、劃分收集物對ACE抑制活性之測定……………………………..41
六、劃分收集物之胺基酸組成………………………………………...41
伍、結論…………………………………………………………………42
陸、參考文獻……………………………………………………………60
圖目錄
頁次
圖一、甲魚粉經胃蛋白酶、胰蛋白酶、凝乳胰蛋白酶水解之蛋白質及 胜肽濃度含量…………………………………………………..43
圖二、甲魚粉經胃蛋白酶、胰蛋白酶、凝乳胰蛋白酶處理之不同時間 水解率…………………………………………………….……44
圖三、單次灌食不同劑量甲魚肉粉末之酵素水解物對於自發性高血壓大鼠收縮壓之變化…………………………..…………………45
圖四、單次灌食不同分子量甲魚粉末之酵素水解物對於自發性高血壓大鼠收縮壓之變化……………………………………………..46
圖五、單次灌食不同劑量甲魚粉末之酵素水解物對於自發性高血壓大鼠舒張壓之變化……………………………………………..…47
圖六、單次灌食不同分子量甲魚粉末之酵素水解物對於自發性高血壓大鼠舒張壓之變化………………………………………..……48
圖七、甲魚水解液(分子量<1000)之膠體層析圖譜………………..49
圖八、由Sephdex G-15劃分物之第4區分所得的高效液相層析圖…50
圖九、由Sephdex G-15劃分物之第5區分所得的高效液相層析圖………………………………………………………………………..51
圖十、由Sephdex G-15劃分物之第6區分所得的高效液相層析圖………………………………………………………………………52




表目錄
頁次
表一、國家聯席委員會對18歲以上成人之血壓分類標準與定義…….3
表二、未水解或經胃腸道酵素水解之甲魚粉其ACEI活性及相對活性
之改變…………………………………………………………53
表三、單次灌食不同劑量甲魚肉粉末之酵素水解物對於自發性高血壓 大鼠收縮壓之影響…………………………………………….54
表四、單次灌食不同劑量及分子量之甲魚肉粉末酵素水解物對於自發 性高血壓大鼠收縮壓之影響………………………..…………55
表五、單次灌食不同劑量甲魚肉粉末之酵素水解物對於自發性高血壓大鼠舒張壓之影響……………………………………………56
表六、單次灌食不同劑量及分子量之甲魚肉粉末酵素水解物對於自發性高血壓大鼠舒張壓之影響…………………………………57
表七、由SephdexG15劃分物之ACE抑制百分比……………………..58
表八、分子量小於1000之區分四其胺基酸組成…………………59











附圖目錄
頁次
附圖一:單次灌食不同劑量甲魚粉末之酵素水解物對於自發性高血壓大鼠收縮壓之影響…………………………………………..71
附圖二:單次灌食不同分子量甲魚粉末之酵素水解物對於自發性高血壓大鼠收縮壓之影響………………………………………..72
附圖三、單次灌食不同劑量甲魚粉末之酵素水解物對於自發性高血壓大鼠舒張壓之影響…………………………………………73
附圖四、單次灌食不同分子量甲魚粉末之酵素水解物對於自發性高血壓大鼠舒張壓之影響………………………………………..74
附圖五、單次灌食不同劑量及分子量之甲魚肉粉末酵素水解物對於自發性高血壓大鼠收縮壓之變化……………………………75
附圖六、單次灌食不同劑量及分子量甲魚粉末之酵素水解物對於自發性高血壓大鼠舒張壓之變化………………………………..76
附圖七、單次灌食不同劑量及分子量之甲魚粉末之酵素水解物對於自發性高血壓大鼠收縮壓之影響……………………………77
附圖八、單次灌食不同劑量及分子量甲魚粉末之酵素水解物對於自發性高血壓大鼠舒張壓之影響………………………………78









附表目錄
頁次
附表一、本實驗所使用蛋白酶的性質…………………………………79
附表二、單次灌食不同劑量甲魚肉粉末之酵素水解物對於自發性高血壓大鼠收縮壓之變化………………………………………80
附表三、單次灌食不同劑量及分子量之甲魚肉粉末酵素水解物對於自發性高血壓大鼠收縮壓之變化……………………………81
附表四、單次灌食不同劑量甲魚肉粉末之酵素水解物對於自發性高血壓大鼠舒張壓之變化………………………………………82
附表五、單次灌食不同劑量及分子量之甲魚肉粉末酵素水解物對於自發性高血壓大鼠舒張壓之變化……………………………83
附表六、動物與人體的每公斤體重劑量折算係數表............................84
林天南及蔡作雍(1996)動物中風模式;高血壓易中風老鼠。國家實驗動物繁殖及研究中心簡訊。3:7-13。
程竹清(1996)蛋白質水解液苦味之探討。食品工業。18:32-39。
國家實驗動物中心(1997)實驗動物品系特徵。生命科學簡訊。11:6-6。
劉鴻珠(1998)中藥免疫增強性低分子物質之初步篩選。藥草。
潘文涵、葉文婷(1998)台灣地區高血壓盛行率認知情形、服藥率及控制率。1993-1996國民營養健康狀況變遷調查結果。Pp. 237-253。行政院衛生署。
張鴻民,許秀娟、陳姿利(1999)自明膠水解液中製備血管收縮素轉化酶抑制劑之研究。中國農業化學會誌。37:546-553。
蔡佳原、陳健祺、蔡孟貞(2001b)甲魚各部分萃取物對癌細胞與免疫細胞的影響。台灣保健食品學會第二屆第一次會員大會壁報論文。
中國實驗動物信息網。http://www.lascn.net/teach/readteach.asp?id=68。
楊欣怡 (2001) 大豆蛋白質水解物對自發性高血壓大白鼠血壓的影響。台北醫學院保健營養學研究所碩士論文。
邱士峰(2003)甲魚萃取物之生體外免疫調節功能評估。國立台灣海洋大學水產食品科學系碩士論文。
蔡宗堯(2003)酵素水解分離大豆蛋白以製備高血壓抑制胜肽。東海大學食品科學系碩士論文。
李仁鳳(2004)甲魚成分分析及甲魚由對倉鼠脂質代謝之影響。輔仁大學食品營養系碩士論文。
國民健康局,高血壓防制手冊。
Ackley S, Barrett-Connor E, Suarez L (1983) Dairy products, calcium, and blood pressure. Am J Clin Nutr 38:457-461.
Ariyoshi Y (1993) Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci 4: 139-144.
Beto JA (1992) Quality of life in treatment of hypertension. A meta-analysis of clinical trial. Am J Hypertens 5: 125-133.
Bierenbaum ML, Wolf E, Raff M, Maginnis WP, Amer MA, Kleyn D, Bisgeier G (1987). The effect of dietary calcium supplementation on blood pressure and serum lipid levels. Nutr Rep Int 36: 1147-1157.
Bierenbaum ML, Wolf E, Bisgeier G, Maginnis WP (1988). Dietary calcium. A method of lowering blood pressure. Am J Hypertens 1: 149S-152S.
Chen JR, Okada T, Muramoto K, Suetsuna K and Yang SC (2002) Identification of angiotension I-converting enzyme inhibitory peptides derived from the peptic digest of soybean protein. J Food Biochem 26: 543-554.
Chen TL, Ken KS, and Chang HM (1999) Study on the preparation of angiotensin-converting enzyme inhibitors (ACEI) from hydrolysates of gelatin. J Chin Agric Chem Soc 37: 546-553.
Chen YH, Liu YH, Yang YH, Feng HH, Chang CT and Chen CC (2002) Antihypertensive effect of an enzymatic hydrolysate of chicken essence residue. Food Sci Technol Res 8:144-147.
Cheung HS, Wang FL, Ondetti MA, Sabo EF and Cushman DW (1980) Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J Biol Chem 255: 401-407.
Cooper TG (1977) The tools of biochemistry (Eds. Willy, J and Sons) INC., New York pp.53-55.
Cushman DW and Cheung HS (1971) Spectrophotometeric assay and properties of the angiotensin converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637-1648.
Feng H, Matsuki N and Saito H (1991a) Attenuation of the increase in blood pressure and vascular reactivity by chronic oral administration of soft-shelled turtle powder in spontaneously hypertensive rats. Phytother Res 4: 57-61.
Feng H, Matsuki N and Saito H (1996b) Improvement of fatigue and acceleration of recovery from stress-induced deficient sexual behavior in mice following oral administration of soft-shelled turtle powder. Biol & Pharma Bull 19: 1447-50.
Feng H, Yamazaki M, Matsuki N and Saito H. (1996a) Anti-tumor effects of orally administered soft-shelled turtle powder in mice. Biol & Pharma Bull 19: 367-8.
Feng H, Yasuhara M, Shimoto Y, Matsuki N, Saito H and Shiga J (1991b)Improvement of carbon tetrachloride-induced liver injury by oral administration of soft-shelled turtle powder in the rat. Phytother Res 5: 201-205.
Fujii M, Matsumura N, Mito K, Shimizu T, Kuwahara M, Sugano S and Karaki H (1993) Antihypertensive effects of peptides in autolysate of bonito bowels on spontaneously hypertensive rats. Biosci Biotech Biochem 57: 2186-2188.
Garcia-Palmieri MR, Costas R, Cruz-Vidal M, Sorlie PD, Tillotson J, Havlik RJ (1984). Milk consumption, calcium intake and decreased hypertension in Puerto Rico. Hypertension 6: 322-328.
Hazato T and Kase R (1986) Isolation of angiotensin converting enzyme inhibitor from porcine plasma. Biochem Biophys Res Commun 139: 52-55.
Hsieh BS, Tseng WP, Chen CM and Chen WY (1975) Renin activities in hypertensive patients. J Formosan Med Assoc 74: 739-46.
Hsieh BS (1978) Prorenin in essential hypertension. J Formosan Med Assoc 77: 35-43.
Hsieh BS and Chen WY (1981) Renal prostaglandin E in essential hypertension: Studies in patients with suppressed renin activity. J Formosan Med Assoc 80: 575-81.
Hsu FL, Lin YH, Lee MH, Lin CL and Hou WC (2002) Both dioscorin, the storage protein of yam (dioscorea alata cv. Tainong No.1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities. J Argic Food Chem 50: 6109-6113.
Hyun CK and Shin HK (2000) Utilization of bovine blood plasma proteins for the production of angiotensin І converting enzyme inhibitory peptides. Process Biochemistry 36: 65-71.
Julius S, Krause L, Schork NJ, Mejia AD, Jones KA, van de Ven C, Johnson EH, Sekkarie MA, Kjeldsen SE and Petrin (1991) Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens 9: 77-84.
Kasuya Y, Utsunomiya N and Matsuki N (1986) Attentuation of the development of hypertension in spontaneously hypertensive rats by chronic oral administration of eicosapentaenoic acid. J Pharmacobio- dyn 9: 239-243.
Kawasaki T, Seki E, Osajima K, Yoshida M, Asada K, Matsui T and Osajima Y (1998) Antihypertensive effect of Val-Tyr, a short chain peptide derived from sardine muscle hydrolyzate, on hypertensive. J Hypertens 16 (suppl.2) : S25.
Kawasaki T, Seki E, Osajima K, Yoshida M, Asada K, Matsui T and Osajima Y (2000) Antihypertensive effect of Val-Tyr, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. J Human Hypertens 14 : 519-523.
Kohama Y, Matsumoto S, Oka H, Teramoto T, Okabe M, Miura T (1988) Isolation of angiotensin converting enzyme inhibitor from tuna muscle. Biochem Biophy Res Commun 155: 332-337.
Kohmura M, Nio N, Kubo K, Minoshima Y, Munekata E and Ariyoshi Y (1989) Inhibition of angiotension-converting enzyme by synthetic peptides of human β-casein. Agric Biol Chem 53: 2107-2114.
Laragh JH, Bear L, Brunner HR, Buhler FG, Ealey JE and Vaughan ED (1972) Renin, angiotensin and aldosterone system in pathogenesis and management of hypertensive vascular disease. Am J Med 52: 633-652.
Mark KS and Davis TP (2000) Stroke: development, prevention and treatment with peptidase inhibitors. Peptides 21: 1965-1973.
Maruyama S and Suzuki H (1982) A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agric Biol Chem 46: 1393-1394.
Matsuda O, Nakamura Y and Takano T (1996) Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr 126: 3063-3068.
Matsufuji H, Matsui T, Seki E, Ohshige S, Kawasaki T, Osajima K, and Osajima Y (1995) Antihypertensive effects of angiotensin fragments in SHR. Biosci Biotechnol Biochem 59: 1398-1401.
Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M and Osajima Y (1994) Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Biosci Biotechnol Biochem 58: 2244-2245.
Matsui T, Li CH and Osajima Y (1999) Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ. J Peptide Sci 5: 289-297.
Matsui T, Li CH, Tanaka T, Maki T, Osajima Y and Kiyoshi M (2000) Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr and the metabolism in rat and human plasma. Bio Pharm Bull 23: 427-431.
Matsui T, Matsufuji H, Seki E, Osajima K, Nakashima M and Osajima Y (1993) Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle. Biosci Biotechnol Biochem 57: 922-925.
Matsui T and Matsumoto K (2001) Biocative peptides with antihypertensive potency derived from natural protein. Peptide Protein Res 4: 113-122.
Matsui T, Tamaya K, Matsumoto K, Osajima Y, Uezono K and Kawasaki T (1999) Plasma concentrations of angiotensin metabolites in young male normotensive and mild hypertensive subjects. Hypertens Res 22: 273-277.
Matsui T, Tamaya K, Matsumoto K, Seki E, Osajima K and Kawasaki T (2000) The bioavailability of antihypertensive small peptide, Val-Tyr, in human. J Hypertens 18 (supple 4): S87.
Matsui T, Yukiyoshi A, Doi S, Sugimoto H, Yamada H and Matsumoto K (2002) Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. J Nutr Biochem 13 : 80-86.
Matsumura N, Fujii M, Takeda Y and Shimizu T (1993) Isolation and characterization of Angiotensin I-converting enzyme inhibitors peptides derived from bonito bowels. Biosci Biotech Biochem 57: 1743-1744.
McCarron DA, Morris CD, Henry HJ, Stanton JL (1984) Blood pressure and nutrient intake in the United States. Science 224: 1392-1398.
Miyoshi S, Ishikawa H, Kaneko T, Fukui F, Tanaka H and Maruyama S (1991a) Structures and activity of angiotensin I-converting enzyme inhibitors in an α-Zein hydrolysate. Agric Biol Chem 55: 1313-1318.
Miyoshi S, Kaneko T, Yoshizawa Y, Fukui F, Tanaka H and Maruyama S (1991b) Hypotensive activity of enzymatic α-zein hydrolysate. Agric Biol Chem 55: 1407-1408.
Nakamura Y, Masuda O and Takano T (1996) Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci Biotech Biochem 60:488-489.
Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki s and Takano T (1995a) Purification and characterization of angiotensin I-converting enzyme inhibition from a sour milk. J Dairy Sci 78: 777-783.
Nakamura Y, Yamamoto N, Sakai K and Takano T (1995b) Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J Dairy Sci 78: 1253-1257.
Okamoto A, Hanagata H, Matsumoto E, Kawamura Y, Koizumi Y and Yanagida Y (1995) Angiotensin-I converting enzyme inhibitory activities of various fermented foods. Biosci Biotech Biochem 59:1147-1149.
Okuda H, Kenji K, Morimoto C, Matsuura Y, Chikaki M and Jiang M (1998) Studies on insulin-like substances and inhibitory substances toward angiotensin- converting enzyme in royal jelly. Honeybee Sci 19:9-14.
Okunishi T, Kawamoto Y, Kurobe Y, Oka K, Ishii K, Tanaka T and Miyazaki M (1991) Pathogentic role of vascular angiotensin converting enzyme in the spontaneously hypertensive rats. Clin Exp Pharm Phys 18:649-659.
Oshima G, Shimabukuro H and Nagasawa K (1979) Peptide inhibitors of angiotensin-I converting enzyme in digests of gelatin by bacterial collagenase. Biochim Biophys Acta 567: 392-400.
Panasiuk R, Amarowicz R, Kostyra H and Sijtsma L (1998) Determination of α-amino nitrogen in pea protein hydrolysates: a comparison of three analytical methods. Food Chem 62:363-367.
Saiga A, Kanda K, Wei Z, Okumura T, Kaneko T and Nishimura T (2002) Hypotensive activity of muscle protein and gluten hydrolysates obtained by protease 26: 391-401.
Saiga A, Okumura T, Makihara T, Katsuta S, Shimizu T, Yamada R and Nishimura T (2003) Angiotensin I-Converting enzyme inhibitory peptides in a hydrolyzed chicken breast muscle extract. J Agric Food Chem 51:1741-1745.
Saito Y, Wanezaki K, Kawano A and Imayasu A (1994) Antihypertensive effects of peptide in Sake and its by-products on spontaneously hypertensive rats. Biosci Biotechnol Biochem 58:812-816.
Seki E, Kawasaki T, Yoshida M, Osajima K, Tamaya K, Matsui T, Osajima Y (1999) Antihypertensive effect of sardine peptide and Valyl-Tyrosine in spontaneously hypertensive rats. J Jpn Soc Nutr Food Sci 52: 271-277.
Seki E and Osajima K, Matsufuji H, Matsuim T and Osajima Y (1996) Resistance to gastrointestinal proteases of the sort chain peptides having reductive effect in blood pressure. Nippon Shokuhin Kagaku Kogaku Kaishi 43:520-525.
Seki E and Osajima K (1996) Quantitative analysis of digestion resistant ACE inhibitory peptides by small intestinal mucosa. Nippon Shokuhin Kogaku Kaishi 43 : 967-969.
Seppo L, Jauhiainen T, Poussa T and Korpela R (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr 77: 326-330.
Shin ZI, Yu R, Park SA, Chung DK, Ahn CW, Nam HS, Kim KS and Lee HJ (2001) His-his-leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J Agric Food Chem 49 : 3004-3009.
Spiers DE and Candas V (1984) Relationship of skin surface area to body mass in the immature rat: a reexamination. J Appl Physiol 56:240-243.
Sugiyama K, Egawa M, Onzuka H and Oba K (1991a) Characteristics of sardine muscle hydrolysate prepared by various enzymic treatment. Nippon Suisan Gakkaishi 57: 475-479.
Sugiyama K, Egawa M, Takada K, Onzuka H and Oba K (1991b) Nutritive evaluation of fish protein hydrolysate. Nippon Suisan Gakkaishi 44: 13-18.
Suh HJ and Whang JH (1999) A peptide from corn gluten hydrolysate that is inhibitory toward angiotensin-I converting enzyme. Biotechnol Lett 21 : 1055-1058.
Takase H, Moreau P, Kung CF, Nava E and Luscher TF (1996) Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency. Hypertension 27:25-31.
Wu KW, Hsieh BS and Tsai HF (1990) Exaggerated natriuresis in salt-sensitive essential hypertension. Clin Exp Hypertens A12: 1395-1403.
Wu J and Ding X (2001) Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J Agric Food Chem 49: 501-506.
Yamamoto N, Akino A and Takano T (1994) Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats. Biosci Biotechnol Biochem 58: 776-778.
Yamamoto N, Akino A and Takano T (1999) Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. J Dairy Sci 82: 1388-1393.
Yokoyama K, Chiba H and Yoshikawa M (1992) Peptide inhibitors for angiotsensin I-converting enzyme from thermolysin digest of derived from sardine muscle. Biosci Biotech Biochem 58: 2244-5.
Zavaco C and Gripon JC (1988) Properties and specificity of a cell-wall proteinase from Lactobacillus helveticus. Le Lait 68: 393-408.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top