跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫證雄
研究生(外文):Sun, Cheng-Hsiung
論文名稱:自營環境下培養柵藻生成葉黃素與超臨界流體萃取葉黃素之探討
論文名稱(外文):Production and supercritical fluid extraction of lutein from Scenedesmus obliquus in an autotrophical cultivation
指導教授:顏宏偉
指導教授(外文):Yen, Hong-Wei
口試委員:楊芳鏘鄧宗禹張嘉修魏毓宏
口試委員(外文):Yang, Fan-ChiangDen, WalterChang, Jo-ShuWei, Yu-Hong
口試日期:2011-07-07
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:87
中文關鍵詞:Scenedesmus obliquus葉黃素超臨界流體
外文關鍵詞:Scenedesmus obliquusLuteinSupercritical fluid
相關次數:
  • 被引用被引用:5
  • 點閱點閱:743
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,微藻因為具備有減碳能力、高油脂含量與豐富的營養成分而逐漸受到矚目。本實驗利用Scenedesmus obliquus的光自營培養,探討三個研究方向:(1)改變培養環境或培養基成分,探討Scenedesmus obliquus濃度與葉黃素含量之影響。結果顯示2%二氧化碳和1600 μmol m-2 s-1光強度可以明顯的改善Scenedesmus obliquus濃度至2.45 g/L和2.46 g/L;食鹽的添加則會造成藻細胞生長遲緩現象發生;而甲烯藍的添加並不會對Scenedesmus obliquus濃度有任何的影響。對於葉黃素含量,2%二氧化碳和1600 μmol m-2 s-1光強度可以增加葉黃素含量至0.40% d.w.與0.47% d.w.;食鹽與甲烯藍的添加則對增加含量沒有任何幫助,(2)建構一組Scenedesmus obliquus生長與光強度之關係式,利用0.5 L的光反應器建立一組方程式Biomass(g/L)=0.3574*ln(modified light intensity)-4.1846,並且利用6.0 L光反應器進行驗證,所得之實驗值與模擬值誤差為8.5%與2.0%,足以證明此方程式具有相當之可信度,(3)探討超臨界二氧化碳萃取能力,是否有取代甲醇萃取方法之可能性。本實驗之超臨界流體萃取葉黃素分為四個部分進行探討:(1)壓力,(2)溫度,(3)共溶劑種類,(4)共溶劑添加量。實驗結果顯示,回收率隨著壓力與溫度的上升而持續的增加,但是增加壓力與溫度之葉黃素回收率還是不及甲醇萃取方法,除此之外,隨著溫度的增加,HPLC圖譜會有其他成分的產生,顯示高溫有可能造成葉黃素分子裂解,進而增加後續純化之困難度。文獻指出,適當的添加共溶劑可以修飾二氧化碳之極性,提高溶解能力,本實驗探討甲醇、乙醇、丙醇、丁醇、丙酮共溶劑之效果。結果顯示,添加乙醇可以得到最高回收率62.20%,而乙醇添加30 mol%可以得到最高回收率76.65%。
In recent years, because the algae have a carbon reduction capacity, high lipid content and rich nutrient ingredients, it gradually attracted much attention. In this study, we explore three research directions by the cultivation of microalgae: (1) the effect of Scenedesmus obliquus concentration and lutein content by changing the environment or the medium composition. The results of this study indicate that an increase in CO2 percentage to 2% and light intensity to 1600 μmolm-2s-1 can enhance Scenedesmus obliquus growth to a maximum of 2.45 g/L and 2.46 g/L; salt will result in the phenomenon of cell growth retardation; methylene blue added will not have any impact. As for the effect of lutein content, 2% carbon dioxide and 1600 μmolm-2s-1 light intensity can increase to 0.40% dw and 0.47% dw; salt and methylene blue added will not cause any effect, (2) scale up experiment and explore the impact of cultivating parameters. We get a light intensity model Biomass(g/L)=0.3574*ln(modified light intensity)-4.1846, and the use of 6.0 L photoreactor verify the credibility of this equation, (3) the ability of supercritical fluid extraction whether to replace the traditional organic solvent extraction method of the possibilities. In this study, the supercritical fluid extraction of lutein is divided into four parts: (a) pressure, (b) temperature, (c) co-solvent type, (d) the optimum amount of co-solvent. The results showed that the increase of pressure and temperature in the SFE operation enhances the lutein recovery yield. However, the enhancement resulting from the increase of temperature and pressure is not significant as compared to the yield from the conventional methanol extraction method. In addition, the increase of temperature leads to them increased impurity observed in the HPLC profile. To further enhance the lutein recovery yield, the addition of a co-solvent in SFE is performed. Of the five solvent powders investigated, ethanol is regarded as the optimum co-solvent for use in lutein extraction. The optimum amount of ethanol to be added in the SFE operation is determined. The best lutein recovery yield obtained is 76.2% (as compared to the conventional methanol extraction method) under the conditions of 400 bar, 70℃ and with ethanol as the co-solvent being added at 0.629 ml/min.
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
第二章 文獻回顧 3
2.1 微藻簡介 3
2.1.1 微藻介紹 3
2.1.2 影響微藻生長之環境因子 6
2.1.3 微藻培養方式 9
2.1.4 微藻培養系統 10
2.2 類胡蘿蔔素簡介 13
2.2.1 葉黃素(Lutein)介紹 14
2.2.2 葉黃素的生理活性 15
2.2.3 葉黃素的生產 16
2.2.4 影響葉黃素合成的營養及環境因子 16
2.3 超臨界流體簡介 23
2.3.1 超臨界流體歷史發展 23
2.3.2 超臨界流體定義 24
2.3.3 超臨界流體性質 25
2.3.4 影響超臨界流體萃取之因素 28
2.3.5 超臨界流體萃取的應用 32
第三章 實驗材料與方法 33
3.1 實驗材料 33
3.1.1 藻種 33
3.1.2 實驗藥品 34
3.2 實驗儀器 35
3.3 分析方法 36
3.3.1 光照強度測量方法 36
3.3.2 藻體濃度測量方法 36
3.3.3 葉黃素(Lutein)濃度測量方法 37
3.4 實驗方法 38
3.4.1 藻種保存 38
3.4.2 藻種活化 38
3.4.3 培養基組成 38
3.5 實驗架構 39
3.6 實驗培養條件 40
3.6.1 改變環境因素(abiotic stress)實驗探討 40
3.6.2 6.0 L光反應器放大培養實驗探討 42
3.6.3 超臨界流體萃取參數實驗探討 43
3.7 實驗設備圖 43
3.7.1 500 ml反應器設備圖 43
3.7.2 6.0 L反應器設備圖 44
3.7.3 20.0 L反應器設備圖 45
3.7.4 超臨界二氧化碳萃取設備圖 46
第四章 結果與討論 47
4.1 柵藻固定二氧化碳之能力 47
4.2 藉由改變環境因素,探討藻細胞和葉黃素含量之影響 48
4.2.1 不同二氧化碳比例對藻細胞生長和葉黃素含量之影響 48
4.2.2 光強度對Scenedesmus obliquus生長和葉黃素含量之影響 51
4.2.3 添加食鹽對Scenedesmus obliquus生長和葉黃素含量之影響 53
4.2.4 添加甲烯藍對Scenedesmus obliquus生長和葉黃素含量之影響 55
4.2.5 改變環境因素(abiotic stress)之綜合探討 57
4.2.6 改變環境因素(abiotic stress)產生之葉黃素與文獻進行比較 57
4.3 6.0 L光反應器實驗探討 59
4.3.1 添加檔板(baffle)對Scenedesmus obliquus生長和葉黃素含量之影響 59
4.3.2 光模式(model)建立 61
4.4 0.5 L、6.0 L、20.0 L光反應器之綜合探討 65
4.5 超臨界流體萃取參數探討 67
4.5.1 有機溶劑萃取葉黃素 67
4.5.2 超臨界流體萃取壓力參數探討 68
4.5.3 超臨界流體萃取溫度參數探討 69
4.5.4 超臨界流體萃取共溶劑(co-solvent)添加種類探討 71
4.5.5 超臨界流體萃取乙醇添加量探討 72
4.5.6 超臨界流體萃取葉黃素實驗與文獻之比較 72
第五章 結論與未來展望 74
5.1 結論 74
5.2 未來展望 76
參考文獻 77
附錄 81


Arnal, E., M. Miranda, I. Almansa, M. Muriach, J. M. Barcia, F. J. Romero, M. Diaz-Llopis, and F. Bosch-Morell, "Lutein prevents cataract development and progression in diabetic rats," Graefes Arch Clin Exp Ophthalmol, 247, 115 (2009).
Bendich, A., "Carotenoids and the immune response," Journal of Nutrition., 119, 112 (1989).
Bone, R. A., J. T. Landrum, and A. Cains, "Opticaal density spectra of the macular pigment in vivo and in vitro," Vision Research, 32, 105 (1992).
Brunner, G., "Supercritical fluids: technology and application to food processing, " Journal of Food Engineering, 67, 21 (2005).
Berg, H. V. D., R. Faulks, H. F. Granado, J. Hirschberg, B. Olmedilla, G. Sandmann, S. Southon, and W. Stahl, "The potential for the improvement of carotenoid levels in foods and the likely systemic effects," Journal of the Science of Food and Agriculture, 80, 880 (2000).
Carpentier, S., M. Knaus, and M. Suh, "Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview," Critical Reviews in Food Science and Nutrition, 49, 313 (2009).
Campo, J. A. D., J. Moreno, H. Rodríguez, M. A. Vargas, J. Rivas, and M. G. Guerrero, "Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta)," Journal of Biotechnology, 76, 51 (2000).
Campo, J. A. D., H. Rodríguez , J. Moreno, , M. A. Vargas, J. Rivas, and M. G. Guerrero, "Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor," Journal of Biotechnology, 85, 289 (2001).
Fang, Y. Z., S. Yang, and G. Wu, "Free radicals, antioxidants, and nutrition," Nutrition, 18, 872 (2002).
Fernández-Sevilla, J. M., F. G. Acién Fernández, and E. M. Grima, "Biotechnological production of lutein and its applications," Applied Microbiol Biotechnol, 86, 27 (2010).
Heber, D. and L. Qing-Yi, "Overview of mechanisms of action of lycopene," Experimental Biology and Medicine, 227, 920 (2002).
Kohn, P. M. and P.R. Savage, "Supercritical fluids try for CPI application," Chemical Engineering, 86, 41 (1979).
Richmond, A., "Book review," Journal of Appied Phycology, 16, 159 (2004).
Lee, Y. K. and H. S. Tay, "High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture," Journal of Applied Phycology, 3, 95 (1991).
Larson, K. A. and M.L. King, "Evaluation of Supercritical Fluid Extraction in the Pharmaceutical Industry, "Biotechnology Process, 2, 73 (1986).
Lenucci, M. S., D. Cadinu, M. Taurino, G. Piro, and G. Dalessandro, "Antioxidant composition in cherry and high-pigment tomato cultivars," Journal of Agricultural and Food Chemistry, 54, 2606 (2006).
Macías-Sánchez, M. D., J. M. Fernández-Sevilla, F. G. A. Fernández, M. C. C. García, and E. M. Grima, "Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis," Food Chemistry, 123, 928 (2010).
Masojidek, J. and H. K. Mangold, "Extraction with supercritical fluids: a progress report from Germany," Journal of the American Oil Chemists Society, 59, 673 (1982).
Piccaglia, R., M. Marotti, and S. Grandi, "Lutein and lutein ester content in different types of Tagetes patula and T. erecta," Industrial Crops and Products, 8, 45 (1998).
Qiang, H., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, "Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances," The Plant Journal, 54, 621 (2008).
Richmond, A., "Principles for attaining maximal microalgal productivity in photobioreactor: an overview, Hydrobiologia, 512, 33 (2004).
Renaud, S. M., L. V. Thinh, G. Lambrinidis, and D. L. Parry, "Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch culture," Aquaculture, 211, 195 (2002).
Roberts, R., J. Green, and B. Lewis, "Lutein and zeaxanthin in eye and skin health," Clinics in Dermatology, 27, 195 (2009).
Sánchez, J. F., J. M. Fernández-Sevilla, F. G. Acién, M. C. Cerón, J. Pérez-Parra, and E. Molina-Grima, "Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature," Applied Microbiology Biotechnology, 79, 719 (2008).
Sánchez, J. F., J. M. Fernández, F. G. Acién, A. Rueda, J. Pérez-Parra, and E. Molina, "Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis," Process Biochemistry, 43, 398 (2008).
Shi, X. M. and F. Chen, "Stability of lutein under various storage conditions," Nahrung, 41, 38 (1997).
Sakaki, H., H. Nochide, S. Komemushi, and W. Miki, "Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No. 21," Journal of bioscience and bioengineering, 93, 338 (2002).
Schrott, E. L., "Carotenoids in plant photoprotection," Applied Chemistry., 57, 729 (1985).
Suh, I. S. and S. B. Lee, "Cultivation of a cyanobacterium in an internally radiation air-lift photobioreactor," Journal of Applied Phycology, 13, 381 (2001).

Tukaj, Z., K. Matusiak-Mikulin, J. Lewandowska, and J. Szurkowski, "Changes in the pigment patterns and the photosynthetic activity during a light-induced cell cycle of the green alga Scenedesmus armatus," Plant Physiology and Biochemistry, 41, 337 (2003).
Goksan, T., Y. A. Durmaz, and E. Gokpinar, "Effects of light path lengths and initial culture density on the cultivation of Chaetoceros muelleri," Aquaculture, 217, 431 (2003).
Wu, Z., S. Wu, and X. Shi, "Supercritical fluid extraction and dterminationof lutein in heterotrophically cultivated Chlorella pyrenoidosa," Journal of Food Process Engineering, 30, 174 (2007).
Willis, M. S. and F. H. Wians, "The role of nutrition in preventing prostate cancer: a review of the proposed mechanism of action various dietary substances," Clinica Chimica Acta., 330, 57 (2003).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊