|
Reference [1] K. S. Narendra and K. Parthasara thy , “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4-27, 1990. [2] R. M. Sanner and J.-J. E. Slotine, “Gaussian networks for direct adaptive control,” IEEE Trans. Neural Networks, vol. 3, no. 6, pp. 837-863, 1992. [3] A. Agarwal, “ A systematic classification of neural-network-based control,” IEEE Contr. Syst. Mag., vol. 17, pp. 75-93, 1997. [4] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller with guaranteed tracking performance,” IEEE Trans. Neural Networks, vol. 7, no. 2, pp. 388-399, 1996. [5] K, Nam, “Stabilization of feedback linearizable systems using radial basis function network,” IEEE Trans. Automatic Control, vol. 44, no. 5, pp. 1026-1031, 1999. [6] S. S. Ge, C. C. Hang, and T. Zhang, “Adaptive neural network control of nonlinear systems by state and output feedback,” IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 29, no. 6, pp. 818-828, 1999. [7] J. R. Noriega and H. Wang, “A direct adaptive neural-network control for unknown nonlinear systems and its application,” IEEE Trans. Neural Networks, vol. 9, pp. 27-34, 1998. [8] M. Zhihong, H. R. Wu, and M. Palaniswami, “An adaptive tracking controller using neural networks for a class of nonlinear systems,” IEEE Trans. Neural Networks, vol. 9, no. 5, pp. 947-1031, 1998. [9] M. A. Mayosky and G. I. E Cancelo, “Direct adaptive control of wind energy conversion system using Gaussian network,” IEEE Trans. Neural Networks, vol. 10, pp. 898-906, 1999. [10] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Trans. Neural Networks, vol. 6, no. 1, pp. 144-156, 1995. [11] T. W. S. Chow and Y. Fang, “A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 151-161, 1998. [12] C. Gan and K. Danai, “Model-based recurrent neural network for modeling nonlinear dynamic systems,” IEEE Trans. Systems, Man, and Cybernetics- Part B: Cybernetics, vol. 30, no. 2, pp. 344-351, 2000. [13] Y. Fang, T. W. S. Chow, and X. D. Li, “Use of a recurrent neural network in discrete sliding-mode control,” IEE Proc., Control Theory and Applications, vol. 146, no. 1, pp. 84-90, 1999; [14] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” J. Dyn. Syst., Measurement, Contr., vol. 97, pp. 220-227, 1975. [15] M. Brown, C. J. Harris, and P. C. Parks, “The interpolation capabilities of the binary CMAC”, Neural Network, vol. 6, pp. 429-440, 1993. [16] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Contr. Syst. Mag., vol. 12, no. 2, pp. 23-30, 1992. [17] F. J. Gonzalez-Serrano, A. R. Figueiras-Vidal, and A. Artes-Rodriguez, “Generalizing CMAC neural networks,” IEEE Trans. Neural Networks, vol. 9, pp. 1509-1514, 1998. [18] S. Fabri and V. Kadirkamanathan, “Dynamic structure neural networks for stable adaptive control of nonlinear systems,” IEEE Trans. Neural Networks, vol. 7, pp. 1151-1166, 1996. [19] S. Seshagiri and H. K. Khalil, “Output feedback control of nonlinear systems using RBF neural networks,” IEEE Trans. Neural Networks, vol. 11, pp. 69-79, 2000. [20] C. T. Chiang and C. S. Lin, “Integration of CMAC technique and weighted regression for efficient learning and output differentiability,” IEEE Trans. Syst., Man, Cybern., pt. B, vol. 28, no. 2, pp. 231-237, 1998. [21] H. Shiraishi, S. L. Ipri, and D. D. Cho, “CMAC neural network controller for fuel-injection systems,” IEEE Trans. Contr. Syst. Technol., vol. 3,no. 2, pp. 32-38, 1995. [22] K. S. Hwang and C. S. Lin, “Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 28, no. 5, pp. 680-692, 1998. [23] R. J. Wai, C. M. Lin and Y. F. Peng, “Robust CMAC neural network control for LLCC-resonant driving linear piezoelectric ceramic motor,” IEE Proc., Contr. Theory Appl., vol. 150, no. 3, pp. 221-232, 2003. [24] D. Marr, “A theory of cerebellar cortex,” J. Physiol., vol. 202, pp. 437-470, 1969. [25] D. O. Hebb, The organization of Behavior: A Neuropsychological Theory. New York: Wiley, 1949. [26] M. Ito, “Mechanisms of motor learning in the cerebellum,” Brain Research Interactive, vol. 886, pp. 237-245, 2000. [27] S. Kikuchi, and P. Chrkroborty, “Car-following model based on fuzzy inference system”, Transportation Res. Rec. 1365, TRB, 1993. [28] W. Lang, C. Wang, and Y. Chiang, “On the car-following model with fuzzy control”, Proc. 2nd Nat. Conf. Fuzzy Theory & Application (Fuzzy’94), pp. 380—385,1994. [29] R. J. Caudill, and W. L. Garrard, “Vehicle-follower longitudinal control for automated transit vehicles”, Journal of Dynamic Systems, Measurement and Control, Vol. 99, No. 4, pp. 241-248, 1997. [30] H. Y. Chiu, G. B. Stupp, Jr., and S. J. Brown, J., “Vehicle-follower control with variable gains for short headway automated guideway transit systems”, Journal of Dynamic Systems, Measurement and Control, Vol. 99, No. 3, pp. 183-189, 1997. [31] S. Sheikholeslam, and C. A. Desoer, “ A system level study of the longitudinal control of a platoon of vehicles”, Journal of Dynamic Systems, Measurement and Control, Vol. 114, No. 2, pp. 286-292, 1992. [32] S. Sheikholeslam, and C. A. Desoer, “Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: A system level study”, IEEE Transactions on Vehicular Technology , Vol. 42, No 4, pp. 546-554, 1990. [33] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1994. [34] S. Sastry and M. Bodson, Adaptive Control — Stability, Convergence, and Robustness, Englewood Cliffs, NJ: Prentice-Hall, 1989. [35] S. Sastry and M. Bodson, Adaptive control — stability, convergence, and robustness, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 19-22, 1998. [36] J. Godthelp, A. R. A. Van Der Horst, S. Burrij, and C. Van Der Lagemaat, “Open and closed loop steering in a lane change maneuver,” Institute for Perception: National Defense Research Organization Group, 1983. [37] R. A. Hess and A. Modjtahedzadeh, “A preview control model of driver steering behavior,” 1989 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 504-509, 1989. [38] R. Rajesh, H. S. Tan, B. K. Law, and W. B. Zhang, “Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons,” IEEE Transactions on Control System Technology, vol. 8, no. 4, pp. 695-708, 2000. [39] D. N. Godbole, V. Hagenmeyer, R. Sengupta, and D. Swaroop, “Design of emergency for automated highway system: Obstacle avoidance problem,” IEEE Conference on Decision and Control, vol. 5, pp. 4774-4779, 1997. [40] Z. Shiller and S. Sunder, “Emergency lane-change maneuvers of autonomous vehicles,” ASME J. Dynamic Systems, Measurement, and Control, vol. 120, no. 1, pp. 37-44, 1998. [41] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern. B, vol. 15, pp116-132, 1985. [42] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” J. Dyn. Syst., Measur., Contr., vol. 97, pp. 220-227, 1975. [43] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks, “ IEEE Contr. Syst. Mag., vol. 12, pp. 23-30, 1992 [44] Y. H. Kim and F. L. Lewis, “Optimal design of CMAC neural-network controller for robot manipulators,” IEEE Trans. Syst., Man, Cybern., C, vol. 30, pp. 22-31, 2000. [45] C. T. Chiang and C. S. Lin, “CMAC with general basis functions, ” Neural Netw., vol. 9, pp. 1199-1211, 1996. [46] S. Jagannathan, “Discrete-time CMAC NN control of feedback linearizable nonlinear systems under a persistence of excitation,” IEEE Trans. Neural Netw., vol. 10, pp. 128-137, 1999. [47] S. G. Cao, N. W. Rees, and G. Feng, “Stability analysis of fuzzy control systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 26, no. 1, pp. 201-204, 1996. [48] C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller-part Ⅰ/Ⅱ,” IEEE Trans. Syst., Man, Cybern. B, vol. 20, no. 2, pp. 404-435, 1990. [49] Qiuzhen Qu, Jianwu Zhang, and Yanzhu Liu, “Variable structure model following control of active four-wheel-steering vehicle based on the optimal reference model,” Vehicle Electronics Conference, 1999. (IVEC ''99) Proceedings of the IEEE International, vol. 1, pp. 254-257, 1999.
|